OpenFPM_pdata  4.1.0
Project that contain the implementation of distributed structures
 
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
Loading...
Searching...
No Matches
interpolation.hpp
1/*
2 * mp4_interpolation.hpp
3 *
4 * Created on: May 4, 2017
5 * Author: i-bird
6 */
7
8#ifndef OPENFPM_NUMERICS_SRC_INTERPOLATION_INTERPOLATION_HPP_
9#define OPENFPM_NUMERICS_SRC_INTERPOLATION_INTERPOLATION_HPP_
10
11#include "NN/Mem_type/MemFast.hpp"
12#include "NN/CellList/CellList.hpp"
13#include "Grid/grid_dist_key.hpp"
14#include "Vector/vector_dist_key.hpp"
15
16#define INTERPOLATION_ERROR_OBJECT std::runtime_error("Runtime interpolation error");
17
18constexpr int inte_m2p = 0;
19constexpr int inte_p2m = 1;
20
27template<unsigned int n_ele>
28struct agg_arr
29{
31 size_t ele[n_ele];
32};
33
39template<typename T>
41{
49 inline static void value(T & result, const T & coeff, const T & src)
50 {
51 result += coeff * src;
52 }
53};
54
60template<typename T, unsigned int N1>
61struct mul_inte<T[N1]>
62{
70 inline static void value(T (& result)[N1], const T & coeff, const T (& src)[N1])
71 {
72 for (size_t i = 0 ; i < N1 ; i++)
73 result[i] += coeff * src[i];
74 }
75};
76
82template<typename T, unsigned int N1, unsigned int N2>
83struct mul_inte<T[N1][N2]>
84{
92 inline static void value(T (& result)[N1][N2], const T & coeff, const T (& src)[N1][N2])
93 {
94 for (size_t i = 0 ; i < N1 ; i++)
95 for (size_t j = 0 ; j < N2 ; j++)
96 result[i][j] += coeff * src[i][j];
97 }
98};
99
107template<unsigned int np, unsigned int prp_g, unsigned int prp_v,unsigned int m2p_or_p2m>
109{
125 template<unsigned int np_a_int, typename grid, typename vector, typename iterator> inline static void value(grid & gd,
126 vector & vd,
127 const grid_dist_lin_dx & k_dist,
128 iterator & key_p,
129 typename vector::stype (& a_int)[np_a_int],
130 const size_t & key)
131 {
132 mul_inte<typename std::remove_reference<decltype(gd.template get<prp_g>(k_dist))>::type>::value(gd.template get<prp_g>(k_dist),a_int[key],vd.template getProp<prp_v>(key_p));
133 }
134};
135
143template<unsigned int np, unsigned int prp_g, unsigned int prp_v>
144struct inte_template<np,prp_g,prp_v,inte_m2p>
145{
161 template<unsigned int np_a_int, typename grid, typename vector, typename iterator> inline static void value(grid & gd,
162 vector & vd,
163 const grid_dist_lin_dx & k_dist,
164 iterator & key_p,
165 typename vector::stype (& a_int)[np_a_int],
166 const size_t & key)
167 {
168 mul_inte<typename std::remove_reference<decltype(gd.template get<prp_g>(k_dist))>::type>::value(vd.template getProp<prp_v>(key_p),a_int[key],gd.template get<prp_g>(k_dist));
169 }
170};
171
177template<unsigned int dims, typename vector, unsigned int np>
179{
191 static inline void value(size_t (& sz)[vector::dims],
192 typename vector::stype a_int[openfpm::math::pow(np,vector::dims)],
193 typename vector::stype (& a)[vector::dims][np])
194 {
197
198 size_t s = 0;
199 while (kit.isNext())
200 {
201 auto key = kit.get();
202
203 a_int[s] = 1;
204
205 for (size_t i = 0 ; i < vector::dims ; i++)
206 a_int[s] *= a[i][key.get(i)];
207
208 s++;
209 ++kit;
210 }
211 }
212};
213
218template<typename vector, unsigned int np>
219struct calculate_aint<2,vector,np>
220{
221
233 static inline void value(size_t (& sz)[vector::dims],
234 typename vector::stype a_int[openfpm::math::pow(np,vector::dims)],
235 typename vector::stype (& a)[vector::dims][np])
236 {
237 size_t s = 0;
238 for (size_t i = 0 ; i < np ; i++)
239 {
240 for (size_t j = 0 ; j < np ; j++)
241 {
242 a_int[s] = a[0][j]*a[1][i];
243
244 s++;
245 }
246 }
247 }
248};
249
254template<typename vector, unsigned int np>
255struct calculate_aint<3,vector,np>
256{
268 static inline void value(size_t (& sz)[vector::dims],
269 typename vector::stype a_int[openfpm::math::pow(np,vector::dims)],
270 typename vector::stype (& a)[vector::dims][np])
271 {
272 size_t s = 0;
273 for (size_t i = 0 ; i < np ; i++)
274 {
275 for (size_t j = 0 ; j < np ; j++)
276 {
277 for (size_t k = 0 ; k < np ; k++)
278 {
279 a_int[s] = a[0][k]*a[1][j]*a[2][i];
280
281 s++;
282 }
283 }
284 }
285 }
286};
287
295template<typename vector, typename grid>
296inline size_t getSub(Point<vector::dims,typename vector::stype> & p,
297 const CellList<vector::dims,typename vector::stype,Mem_fast<>,shift<vector::dims,typename vector::stype>> & geo_cell,
298 grid & gd)
299{
300 size_t cell = geo_cell.getCell(p);
301
302 for (size_t i = 0 ; i < geo_cell.getNelements(cell) ; i++)
303 {
304 size_t ns = geo_cell.get(cell,i);
305
306 if (gd.getDecomposition().getSubDomain(ns).isInsideNP(p))
307 return ns;
308 }
309
310 // If we end up here it mean that the particle decomposition and the grid decomposition are at machine precision level
311 // different. To recover we shift the particle of a machine precision correction inside the domain.
312
313 typename vector::stype dx[vector::dims];
314 typename vector::stype best_dx[vector::dims];
315 typename vector::stype best_tot_dx;
316 long int best_sub;
317
318 Box<vector::dims,typename vector::stype> sub_dom = gd.getDecomposition().getSubDomain(0);
319
320 for (size_t j = 0 ; j < vector::dims ; j++)
321 {
322 if (sub_dom.getLow(j) > p.get(j))
323 {dx[j] = 2*(sub_dom.getLow(j) - p.get(j));}
324 else if (sub_dom.getHigh(j) < p.get(j))
325 {dx[j] = 2*(sub_dom.getHigh(j) - p.get(j));}
326 else {dx[j] = 0;}
327 }
328
329 typename vector::stype tot_dx = 0.0;
330
331 for (size_t j = 0 ; j < vector::dims ; j++)
332 {tot_dx += fabs(dx[j]);}
333
334 best_tot_dx = tot_dx;
335 for (size_t j = 0 ; j < vector::dims ; j++)
336 {best_dx[j] = dx[j];}
337 best_sub = 0;
338
339 for (size_t i = 1 ; i < gd.getDecomposition().getNSubDomain() ; i++)
340 {
341 Box<vector::dims,typename vector::stype> sub_dom = gd.getDecomposition().getSubDomain(i);
342
343 for (size_t j = 0 ; j < vector::dims ; j++)
344 {
345 if (sub_dom.getLow(j) > p.get(j))
346 {dx[j] = 2*(sub_dom.getLow(j) - p.get(j));}
347 else if (sub_dom.getHigh(j) < p.get(j))
348 {dx[j] = 2*(sub_dom.getHigh(j) - p.get(j));}
349 else {dx[j] = 0;}
350 }
351
352 typename vector::stype tot_dx = 0.0;
353
354 for (size_t j = 0 ; j < vector::dims ; j++)
355 {tot_dx += fabs(dx[j]);}
356
357 if (tot_dx < best_tot_dx)
358 {
359 best_tot_dx = tot_dx;
360 for (size_t j = 0 ; j < vector::dims ; j++)
361 {best_dx[j] = dx[j];}
362 best_sub = i;
363 }
364 }
365
366 // shift xp
367
368 for (size_t j = 0 ; j < vector::dims ; j++)
369 {p.get(j) += best_dx[j];}
370
371 return best_sub;
372}
373
380template<typename vector,typename kernel>
382{
384 typedef typename vector::stype arr_type;
385
411 template<unsigned int prp_g, unsigned int prp_v, unsigned int m2p_or_p2m, unsigned int np_a_int, typename grid>
412 static inline void inte_calc(const vect_dist_key_dx & key_p,
413 vector & vd,
415 int (& ip)[vector::dims][kernel::np],
416 grid & gd,
417 const typename vector::stype (& dx)[vector::dims],
418 typename vector::stype (& xp)[vector::dims],
419 typename vector::stype (& a_int)[np_a_int],
420 typename vector::stype (& a)[vector::dims][kernel::np],
421 typename vector::stype (& x)[vector::dims][kernel::np],
422 size_t (& sz)[vector::dims],
423 const CellList<vector::dims,typename vector::stype,Mem_fast<>,shift<vector::dims,typename vector::stype>> & geo_cell,
424 openfpm::vector<agg_arr<openfpm::math::pow(kernel::np,vector::dims)>> & offsets)
425 {
427
428 // On which sub-domain we interpolate the particle
429 size_t sub = getSub<vector>(p,geo_cell,gd);
430
431 typename vector::stype x0[vector::dims];
432
433 // calculate the position of the particle in the grid
434 // coordinated
435 for (size_t i = 0 ; i < vector::dims ; i++)
436 {x0[i] = (p.get(i)-domain.getLow(i))*dx[i];}
437
438 // convert into integer
439 for (size_t i = 0 ; i < vector::dims ; i++)
440 {ip[i][0] = (int)x0[i];}
441
442 // convert the global grid position into local grid position
444
445 for (size_t i = 0 ; i < vector::dims ; i++)
446 {base.set_d(i,ip[i][0] - gd.getLocalGridsInfo().get(sub).origin.get(i) - (long int)kernel::np/2 + 1);}
447
448 // convenient grid of points
449
450 for (size_t j = 0 ; j < kernel::np-1 ; j++)
451 {
452 for (size_t i = 0 ; i < vector::dims ; i++)
453 {ip[i][j+1] = (int)ip[i][j]+1;}
454 }
455
456 for (size_t i = 0 ; i < vector::dims ; i++)
457 xp[i] = x0[i] - ip[i][0];
458
459 for (long int j = 0 ; j < kernel::np ; j++)
460 {
461 for (size_t i = 0 ; i < vector::dims ; i++)
462 {x[i][j] = - xp[i] + typename vector::stype((long int)j - (long int)kernel::np/2 + 1);}
463 }
464
465 for (size_t j = 0 ; j < kernel::np ; j++)
466 {
467 for (size_t i = 0 ; i < vector::dims ; i++)
468 {a[i][j] = kernel::value(x[i][j],j);}
469 }
470
472
473 grid_dist_lin_dx k_dist_lin;
474 k_dist_lin.setSub(sub);
475
476 size_t k = 0;
477 auto & gs_info = gd.get_loc_grid(sub).getGrid();
478
479 size_t lin_base = gs_info.LinId(base);
480
481 for (size_t i = 0 ; i < openfpm::math::pow(kernel::np,vector::dims) ; i++)
482 {
483 size_t lin = offsets.get(sub).ele[k] + lin_base;
484 k_dist_lin.getKeyRef() = lin;
485
486 inte_template<kernel::np,prp_g,prp_v,m2p_or_p2m>::value(gd,vd,k_dist_lin,key_p,a_int,k);
487
488 k++;
489 }
490 }
491};
492
502template<typename vector,typename grid, typename kernel>
504{
507
513 struct Box_vol
514 {
517
519 size_t vol;
520
528 bool operator<(const Box_vol & bv)
529 {
530 return vol < bv.vol;
531 }
532 };
533
535 vector & vd;
536
539
541 typedef typename vector::stype arr_type;
542
544 openfpm::vector<agg_arr<openfpm::math::pow(kernel::np,vector::dims)>> offsets;
545
547 size_t sz[vector::dims];
548
550 typename vector::stype dx[vector::dims];
551
554
562 void calculate_the_offsets(openfpm::vector<agg_arr<openfpm::math::pow(kernel::np,vector::dims)>> & offsets, size_t (& sz)[vector::dims])
563 {
564 offsets.resize(gd.getN_loc_grid());
565
566 for (size_t i = 0 ; i < offsets.size() ; i++)
567 {
568 auto & loc_grid = gd.get_loc_grid(i);
569 const grid_sm<vector::dims,void> & gs = loc_grid.getGrid();
570
573
574 size_t k = 0;
575
576 while (kit2.isNext())
577 {
578 auto key = kit2.get();
579
580 long int lin = gs.LinId(key);
581
582 offsets.get(i).ele[k] = lin;
583
584 ++k;
585 ++kit2;
586 }
587 }
588 }
589
590public:
591
600 interpolate(vector & vd, grid & gd)
601 :vd(vd),gd(gd)
602 {
603 // get the processor bounding box in grid units
604 Box<vector::dims,typename vector::stype> bb = gd.getDecomposition().getProcessorBounds();
605 Box<vector::dims,typename vector::stype> bunit = gd.getDecomposition().getCellDecomposer().getCellBox();
606
607 size_t div[vector::dims];
608
609 for (size_t i = 0 ; i < vector::dims ; i++)
610 div[i] = (bb.getHigh(i) - bb.getLow(i)) / bunit.getHigh(i);
611
612 geo_cell.Initialize(bb,div);
613
614 // Now draw the domain into the cell list
615
616 auto & dec = gd.getDecomposition();
617
618 for (size_t i = 0 ; i < dec.getNSubDomain() ; i++)
619 {
620 const Box<vector::dims,typename vector::stype> & bx = dec.getSubDomain(i);
621
622 // get the cells this box span
623 const grid_key_dx<vector::dims> p1 = geo_cell.getCellGrid(bx.getP1());
624 const grid_key_dx<vector::dims> p2 = geo_cell.getCellGrid(bx.getP2());
625
626 // Get the grid and the sub-iterator
627 auto & gi = geo_cell.getGrid();
629
630 // add the box-id to the cell list
631 while (g_sub.isNext())
632 {
633 auto key = g_sub.get();
634 geo_cell.addCell(gi.LinId(key),i);
635 ++g_sub;
636 }
637 }
638
639 for (size_t i = 0 ; i < vector::dims ; i++)
640 {sz[i] = kernel::np;}
641
643
644 // calculate spacing
645 for (size_t i = 0 ; i < vector::dims ; i++)
646 {dx[i] = 1.0/gd.spacing(i);}
647
648 // simulation domain
649 domain = vd.getDecomposition().getDomain();
650 };
651
662 template<unsigned int prp_v, unsigned int prp_g> void p2m(vector & vd, grid & gd)
663 {
664#ifdef SE_CLASS1
665
666 if (!vd.getDecomposition().is_equal_ng(gd.getDecomposition()) )
667 {
668 std::cerr << __FILE__ << ":" << __LINE__ << " Error: the distribution of the vector of particles" <<
669 " and the grid is different. In order to interpolate the two data structure must have the" <<
670 " same decomposition" << std::endl;
671
672 ACTION_ON_ERROR(INTERPOLATION_ERROR_OBJECT)
673 }
674
675#endif
676
677 // point position
678 typename vector::stype xp[vector::dims];
679
680 int ip[vector::dims][kernel::np];
681 typename vector::stype x[vector::dims][kernel::np];
682 typename vector::stype a[vector::dims][kernel::np];
683
684 typename vector::stype a_int[openfpm::math::pow(kernel::np,vector::dims)];
685
686 auto it = vd.getDomainIterator();
687
688 while (it.isNext() == true)
689 {
690 auto key_p = it.get();
691
692 inte_calc_impl<vector,kernel>::template inte_calc<prp_g,prp_v,inte_p2m,openfpm::math::pow(kernel::np,vector::dims)>(key_p,vd,domain,ip,gd,dx,xp,a_int,a,x,sz,geo_cell,offsets);
693
694 ++it;
695 }
696 }
697
708 template<unsigned int prp_g, unsigned int prp_v> void m2p(grid & gd, vector & vd)
709 {
710#ifdef SE_CLASS1
711
712 if (!vd.getDecomposition().is_equal_ng(gd.getDecomposition()) )
713 {
714 std::cerr << __FILE__ << ":" << __LINE__ << " Error: the distribution of the vector of particles" <<
715 " and the grid is different. In order to interpolate the two data structure must have the" <<
716 " same decomposition" << std::endl;
717
718 ACTION_ON_ERROR(INTERPOLATION_ERROR_OBJECT)
719 }
720
721#endif
722
723 // point position
724 typename vector::stype xp[vector::dims];
725
726 int ip[vector::dims][kernel::np];
727 typename vector::stype x[vector::dims][kernel::np];
728 typename vector::stype a[vector::dims][kernel::np];
729
730 // grid_cpu<vector::dims,aggregate<typename vector::stype>> a_int(sz);
731 // a_int.setMemory();
732 typename vector::stype a_int[openfpm::math::pow(kernel::np,vector::dims)];
733
734 auto it = vd.getDomainIterator();
735
736 while (it.isNext() == true)
737 {
738 auto key_p = it.get();
739
740 inte_calc_impl<vector,kernel>::template inte_calc<prp_g,prp_v,inte_m2p,openfpm::math::pow(kernel::np,vector::dims)>(key_p,vd,domain,ip,gd,dx,xp,a_int,a,x,sz,geo_cell,offsets);
741
742 ++it;
743 }
744 }
745
746
758 template<unsigned int prp_v, unsigned int prp_g> inline void p2m(vector & vd, grid & gd,const vect_dist_key_dx & p)
759 {
760#ifdef SE_CLASS1
761
762 if (!vd.getDecomposition().is_equal_ng(gd.getDecomposition()) )
763 {
764 std::cerr << __FILE__ << ":" << __LINE__ << " Error: the distribution of the vector of particles" <<
765 " and the grid is different. In order to interpolate the two data structure must have the" <<
766 " same decomposition" << std::endl;
767
768 ACTION_ON_ERROR(INTERPOLATION_ERROR_OBJECT)
769 }
770
771#endif
772
773 // point position
774 typename vector::stype xp[vector::dims];
775
776 int ip[vector::dims][kernel::np];
777 typename vector::stype x[vector::dims][kernel::np];
778 typename vector::stype a[vector::dims][kernel::np];
779
780 typename vector::stype a_int[openfpm::math::pow(kernel::np,vector::dims)];
781
782 /* coverty[uninit_use_in_call] */
783 inte_calc_impl<vector,kernel>::template inte_calc<prp_g,prp_v,inte_p2m,openfpm::math::pow(kernel::np,vector::dims)>(p,vd,domain,ip,gd,dx,xp,a_int,a,x,sz,geo_cell,offsets);
784 }
785
797 template<unsigned int prp_g, unsigned int prp_v> inline void m2p(grid & gd, vector & vd, const vect_dist_key_dx & p)
798 {
799#ifdef SE_CLASS1
800
801 if (!vd.getDecomposition().is_equal_ng(gd.getDecomposition()) )
802 {
803 std::cerr << __FILE__ << ":" << __LINE__ << " Error: the distribution of the vector of particles" <<
804 " and the grid is different. In order to interpolate the two data structure must have the" <<
805 " same decomposition" << std::endl;
806
807 ACTION_ON_ERROR(INTERPOLATION_ERROR_OBJECT)
808 }
809
810#endif
811
812 // point position
813 typename vector::stype xp[vector::dims];
814
815 int ip[vector::dims][kernel::np];
816 typename vector::stype x[vector::dims][kernel::np];
817 typename vector::stype a[vector::dims][kernel::np];
818
819 // grid_cpu<vector::dims,aggregate<typename vector::stype>> a_int(sz);
820 // a_int.setMemory();
821 typename vector::stype a_int[openfpm::math::pow(kernel::np,vector::dims)];
822
823 inte_calc_impl<vector,kernel>::template inte_calc<prp_g,prp_v,inte_m2p,openfpm::math::pow(kernel::np,vector::dims)>(p,vd,domain,ip,gd,dx,xp,a_int,a,x,sz,geo_cell,offsets);
824 }
825
832 {
833 return ::getSub<vector>(p,geo_cell,gd);
834 }
835
836};
837
838#endif /* OPENFPM_NUMERICS_SRC_INTERPOLATION_INTERPOLATION_HPP_ */
This class represent an N-dimensional box.
Definition Box.hpp:61
Point< dim, T > getP2() const
Get the point p2.
Definition Box.hpp:722
__device__ __host__ T getLow(int i) const
get the i-coordinate of the low bound interval of the box
Definition Box.hpp:556
__device__ __host__ T getHigh(int i) const
get the high interval of the box
Definition Box.hpp:567
Point< dim, T > getP1() const
Get the point p1.
Definition Box.hpp:708
Class for FAST cell list implementation.
Definition CellList.hpp:357
const grid_sm< dim, void > & getGrid()
Return the underlying grid information of the cell list.
Definition CellList.hpp:447
void Initialize(CellDecomposer_sm< dim, T, transform > &cd_sm, const Box< dim, T > &dom_box, const size_t pad=1, size_t slot=STARTING_NSLOT)
Definition CellList.hpp:465
void addCell(size_t cell_id, typename Mem_type::local_index_type ele)
Add to the cell.
Definition CellList.hpp:715
It is a class that work like a vector of vector.
Definition MemFast.hpp:89
This class implement the point shape in an N-dimensional space.
Definition Point.hpp:28
__device__ __host__ const T & get(unsigned int i) const
Get coordinate.
Definition Point.hpp:172
Distributed linearized key.
size_t & getKeyRef()
Get the reference key.
void setSub(size_t sub)
Set the local grid.
Declaration grid_key_dx_iterator_sub.
grid_key_dx< dim > get() const
Return the actual grid key iterator.
bool isNext()
Check if there is the next element.
const grid_key_dx< dim > & get() const
Get the actual key.
bool isNext()
Check if there is the next element.
grid_key_dx is the key to access any element in the grid
Definition grid_key.hpp:19
__device__ __host__ void set_d(index_type i, index_type id)
Set the i index.
Definition grid_key.hpp:516
Declaration grid_sm.
Definition grid_sm.hpp:167
mem_id LinId(const grid_key_dx< N, ids_type > &gk, const signed char sum_id[N]) const
Linearization of the grid_key_dx with a specified shift.
Definition grid_sm.hpp:454
Main class for interpolation Particle to mest p2m and Mesh to particle m2p.
void m2p(grid &gd, vector &vd)
Interpolate mesh to particle.
Box< vector::dims, typename vector::stype > domain
Simulation domain.
interpolate(vector &vd, grid &gd)
construct an interpolation object between a grid and a vector
openfpm::vector< agg_arr< openfpm::math::pow(kernel::np, vector::dims)> > offsets
the offset for each sub-sub-domain
vector & vd
particles
void calculate_the_offsets(openfpm::vector< agg_arr< openfpm::math::pow(kernel::np, vector::dims)> > &offsets, size_t(&sz)[vector::dims])
It calculate the interpolation stencil offsets.
size_t sz[vector::dims]
kernel size
CellList< vector::dims, typename vector::stype, Mem_fast<>, shift< vector::dims, typename vector::stype > > geo_cell
Cell list used to convert particles position to sub-domain.
void p2m(vector &vd, grid &gd, const vect_dist_key_dx &p)
Interpolate particles to mesh.
int getSub(Point< vector::dims, typename vector::stype > &p)
Return the sub-domain of the particles.
vector::stype dx[vector::dims]
grid spacing
void p2m(vector &vd, grid &gd)
Interpolate particles to mesh.
void m2p(grid &gd, vector &vd, const vect_dist_key_dx &p)
Interpolate mesh to particle.
grid & gd
grid
vector::stype arr_type
Type of the calculations.
Implementation of 1-D std::vector like structure.
size_t size()
Stub size.
Grid key for a distributed grid.
It store the offsets of the interpolation points.
static void value(size_t(&sz)[vector::dims], typename vector::stype a_int[openfpm::math::pow(np, vector::dims)], typename vector::stype(&a)[vector::dims][np])
Calculate the coefficients of the interpolation a_int for one particles having the 1D kernel values.
static void value(size_t(&sz)[vector::dims], typename vector::stype a_int[openfpm::math::pow(np, vector::dims)], typename vector::stype(&a)[vector::dims][np])
Calculate the coefficients of the interpolation a_int for one particles having the 1D kernel values.
Calculate aint.
static void value(size_t(&sz)[vector::dims], typename vector::stype a_int[openfpm::math::pow(np, vector::dims)], typename vector::stype(&a)[vector::dims][np])
Calculate the coefficients of the interpolation a_int for one particles having the 1D kernel values.
calculate the interpolation for one point
static void inte_calc(const vect_dist_key_dx &key_p, vector &vd, const Box< vector::dims, typename vector::stype > &domain, int(&ip)[vector::dims][kernel::np], grid &gd, const typename vector::stype(&dx)[vector::dims], typename vector::stype(&xp)[vector::dims], typename vector::stype(&a_int)[np_a_int], typename vector::stype(&a)[vector::dims][kernel::np], typename vector::stype(&x)[vector::dims][kernel::np], size_t(&sz)[vector::dims], const CellList< vector::dims, typename vector::stype, Mem_fast<>, shift< vector::dims, typename vector::stype > > &geo_cell, openfpm::vector< agg_arr< openfpm::math::pow(kernel::np, vector::dims)> > &offsets)
M2P or P2M for one particle.
vector::stype arr_type
Type of the calculations.
static void value(grid &gd, vector &vd, const grid_dist_lin_dx &k_dist, iterator &key_p, typename vector::stype(&a_int)[np_a_int], const size_t &key)
Evaluate the interpolation.
Class that select the operation to do differently if we are doing Mesh to particle (m2p) or particle ...
static void value(grid &gd, vector &vd, const grid_dist_lin_dx &k_dist, iterator &key_p, typename vector::stype(&a_int)[np_a_int], const size_t &key)
Evaluate the interpolation.
size_t vol
Calculated volume.
bool operator<(const Box_vol &bv)
operator to reorder
Box< vector::dims, size_t > bv
Box.
static void value(T(&result)[N1][N2], const T &coeff, const T(&src)[N1][N2])
multiply the src by coeff for several types T
static void value(T(&result)[N1], const T &coeff, const T(&src)[N1])
multiply the src by coeff for several types T
multiply the src by coeff for several types T
static void value(T &result, const T &coeff, const T &src)
multiply the src by coeff for several types T