OpenFPM_pdata  4.1.0
Project that contain the implementation of distributed structures
 
Loading...
Searching...
No Matches
Lap< arg, Sys_eqs, CENTRAL_SYM > Class Template Reference

Laplacian second order approximation CENTRAL Scheme (with central derivative in the single) More...

Detailed Description

template<typename arg, typename Sys_eqs>
class Lap< arg, Sys_eqs, CENTRAL_SYM >

Laplacian second order approximation CENTRAL Scheme (with central derivative in the single)

         1.0
          *
          | -4.0
  1.0 *---+---* 1.0
          |
          *
         1.0

* 

Definition at line 133 of file Laplacian.hpp.

#include <Laplacian.hpp>

Static Public Member Functions

static void value (const typename stub_or_real< Sys_eqs, Sys_eqs::dims, typename Sys_eqs::stype, typename Sys_eqs::b_grid::decomposition::extended_type >::type &g_map, grid_dist_key_dx< Sys_eqs::dims > &kmap, const grid_sm< Sys_eqs::dims, void > &gs, typename Sys_eqs::stype(&spacing)[Sys_eqs::dims], std::unordered_map< long int, typename Sys_eqs::stype > &cols, typename Sys_eqs::stype coeff)
 Calculate which colums of the Matrix are non zero.
 

Member Function Documentation

◆ value()

template<typename arg , typename Sys_eqs >
static void Lap< arg, Sys_eqs, CENTRAL_SYM >::value ( const typename stub_or_real< Sys_eqs, Sys_eqs::dims, typename Sys_eqs::stype, typename Sys_eqs::b_grid::decomposition::extended_type >::type &  g_map,
grid_dist_key_dx< Sys_eqs::dims > &  kmap,
const grid_sm< Sys_eqs::dims, void > &  gs,
typename Sys_eqs::stype(&)  spacing[Sys_eqs::dims],
std::unordered_map< long int, typename Sys_eqs::stype > &  cols,
typename Sys_eqs::stype  coeff 
)
inlinestatic

Calculate which colums of the Matrix are non zero.

stub_or_real it is just for change the argument type when testing, in normal conditions it is a distributed map

Parameters
g_mapmap grid
kmapposition in the grid
spacingof the grid
gsGrid info
colsnon-zero colums calculated by the function
coeffcoefficent (constant in front of the derivative)

Example

Definition at line 155 of file Laplacian.hpp.


The documentation for this class was generated from the following file: