OpenFPM_pdata  4.1.0
Project that contain the implementation of distributed structures
 
Loading...
Searching...
No Matches
FDScheme< Sys_eqs > Class Template Reference

Finite Differences. More...

Detailed Description

template<typename Sys_eqs>
class FDScheme< Sys_eqs >

Finite Differences.

This class is able to discretize on a Matrix any system of equations producing a linear system of type \(Ax=b\). In order to create a consistent Matrix it is required that each processor must contain a contiguous range on grid points without holes. In order to ensure this, each processor produce a contiguous local labeling of its local points. Each processor also add an offset equal to the number of local points of the processors with id smaller than him, to produce a global and non overlapping labeling. An example is shown in the figures down, here we have a grid 8x6 divided across four processors each processor label locally its grid points

 *
+--------------------------+
| 1   2   3   4| 1  2  3  4|
|              |           |
| 5   6   7   8| 5  6  7  8|
|              |           |
| 9  10  11  12| 9 10 11 12|
+--------------------------+
|13  14  15| 13 14 15 16 17|
|          |               |
|16  17  18| 18 19 20 21 22|
|          |               |
|19  20  21| 23 24 25 26 27|
+--------------------------+

 *
 *
 * 

To the local relabelling is added an offset to make the local id global and non overlapping

 *
+--------------------------+
| 1   2   3   4|23 24 25 26|
|              |           |
| 5   6   7   8|27 28 29 30|
|              |           |
| 9  10  12  13|31 32 33 34|
+--------------------------+
|14  15  16| 35 36 37 38 39|
|          |               |
|17  18  19| 40 41 42 43 44|
|          |               |
|20  21  22| 45 46 47 48 49|
+--------------------------+
 *
 *
 * 
Template Parameters
Sys_eqsDefinition of the system of equations

Examples

Solve lid-driven cavity 2D for incompressible fluid (inertia=0 --> Re=0)

In this case the system of equation to solve is

\( \left\{ \begin{array}{c} \eta\nabla v_x + \partial_x P = 0 \quad Eq1 \\ \eta\nabla v_y + \partial_y P = 0 \quad Eq2 \\ \partial_x v_x + \partial_y v_y = 0 \quad Eq3 \end{array} \right. \)

and boundary conditions

\( \left\{ \begin{array}{c} v_x = 0, v_y = 0 \quad x = 0 \quad B1\\ v_x = 0, v_y = 1.0 \quad x = L \quad B2\\ v_x = 0, v_y = 0 \quad y = 0 \quad B3\\ v_x = 0, v_y = 0 \quad y = L \quad B4\\ \end{array} \right. \)

with \(v_x\) and \(v_y\) the velocity in x and y and \(P\) Pressure

In order to solve such system first we define the general properties of the system

Define the equations of the system

Define the domain and impose the equations

3D

A 3D case is given in the examples

Definition at line 126 of file FDScheme.hpp.

#include <FDScheme.hpp>

Data Structures

struct  constant_b
 Encapsulation of the b term as constant. More...
 
struct  grid_b
 Encapsulation of the b term as grid. More...
 
struct  key_and_eq
 Equation id + space position. More...
 

Public Types

typedef grid_dist_id< Sys_eqs::dims, typename Sys_eqs::stype, aggregate< size_t >, typename Sys_eqs::b_grid::decomposition::extended_type > g_map_type
 Distributed grid map.
 
typedef Sys_eqs Sys_eqs_typ
 Type that specify the properties of the system of equations.
 

Public Member Functions

void setStagPos (comb< Sys_eqs::dims >(&sp)[Sys_eqs::nvar])
 set the staggered position for each property
 
void computeStag ()
 compute the staggered position for each property
 
const Padding< Sys_eqs::dims > & getPadding ()
 Get the specified padding.
 
const g_map_typegetMap ()
 Return the map between the grid index position and the position in the distributed vector.
 
 FDScheme (const Ghost< Sys_eqs::dims, long int > &stencil, const Box< Sys_eqs::dims, typename Sys_eqs::stype > &domain, const typename Sys_eqs::b_grid &b_g)
 Constructor.
 
 FDScheme (Padding< Sys_eqs::dims > &pd, const Ghost< Sys_eqs::dims, long int > &stencil, const Box< Sys_eqs::dims, typename Sys_eqs::stype > &domain, const typename Sys_eqs::b_grid &b_g)
 Constructor.
 
template<typename T >
void impose (const T &op, typename Sys_eqs::stype num, long int id, const long int(&start)[Sys_eqs::dims], const long int(&stop)[Sys_eqs::dims], bool skip_first=false)
 Impose an operator.
 
void new_b ()
 In case we want to impose a new b re-using FDScheme we have to call This function.
 
void new_A ()
 In case we want to impose a new A re-using FDScheme we have to call This function.
 
template<unsigned int prp, typename b_term , typename iterator >
void impose_dit_b (b_term &b_t, const iterator &it_d, long int id=0)
 Impose an operator.
 
template<typename T >
void impose_dit (const T &op, typename Sys_eqs::stype num, long int id, grid_dist_iterator_sub< Sys_eqs::dims, typename g_map_type::d_grid > it_d)
 Impose an operator.
 
template<typename T , typename bop , typename iterator >
void impose_git_gmap (const T &op, bop num, long int id, iterator &it)
 Impose an operator.
 
template<typename T , typename bop , typename iterator >
void impose_git (const T &op, bop num, long int id, const iterator &it_d, bool skip_first=false)
 Impose an operator.
 
template<unsigned int prp, typename T , typename b_term , typename iterator >
void impose_dit (const T &op, b_term &b_t, const iterator &it_d, long int id=0)
 Impose an operator.
 
Sys_eqs::SparseMatrix_type & getA ()
 produce the Matrix
 
Sys_eqs::Vector_type & getB ()
 produce the B vector
 
template<unsigned int ... pos, typename Vct , typename Grid_dst >
void copy (Vct &v, const long int(&start)[Sys_eqs_typ::dims], const long int(&stop)[Sys_eqs_typ::dims], Grid_dst &g_dst)
 Copy the vector into the grid.
 
template<unsigned int ... pos, typename Vct , typename Grid_dst >
void copy (Vct &v, Grid_dst &g_dst)
 Copy the vector into the grid.
 

Data Fields

Sys_eqs::SparseMatrix_type A
 type of the sparse matrix
 

Private Types

typedef Sys_eqs::SparseMatrix_type::triplet_type triplet
 Sparse matrix triplet type.
 

Private Member Functions

key_and_eq from_row_to_key (size_t row)
 From the row Matrix position to the spatial position.
 
const std::vector< size_t > padding (const size_t(&sz)[Sys_eqs::dims], Padding< Sys_eqs::dims > &pd)
 calculate the mapping grid size with padding
 
void consistency ()
 Check if the Matrix is consistent.
 
template<typename Vct , typename Grid_dst , unsigned int ... pos>
void copy_staggered (Vct &v, Grid_dst &g_dst, grid_key_dx< Grid_dst::dims > &start_d, grid_key_dx< Grid_dst::dims > &stop_d)
 Copy a given solution vector in a staggered grid.
 
template<typename Vct , typename Grid_dst , unsigned int ... pos>
void copy_normal (Vct &v, Grid_dst &g_dst)
 Copy a given solution vector in a normal grid.
 
template<typename bop , typename iterator >
void impose_dit_b (bop num, long int id, const iterator &it_d)
 Impose an operator.
 
template<typename T , typename bop , typename iterator >
void impose_dit (const T &op, bop num, long int id, const iterator &it_d)
 Impose an operator.
 
void construct_gmap ()
 Construct the gmap structure.
 
void Initialize (const Box< Sys_eqs::dims, typename Sys_eqs::stype > &domain)
 

Private Attributes

Padding< Sys_eqs::dims > pd
 Padding.
 
Sys_eqs::Vector_type b
 Vector b.
 
const grid_sm< Sys_eqs::dims, void > & gs
 Domain Grid informations.
 
Sys_eqs::stype spacing [Sys_eqs::dims]
 Get the grid spacing.
 
g_map_type g_map
 mapping grid
 
size_t row
 row of the matrix
 
size_t row_b
 row on b
 
openfpm::vector< size_t > pnt
 Grid points that has each processor.
 
comb< Sys_eqs::dims > s_pos [Sys_eqs::nvar]
 Staggered position for each property.
 
size_t s_pnt
 

Member Typedef Documentation

◆ g_map_type

template<typename Sys_eqs >
typedef grid_dist_id<Sys_eqs::dims,typename Sys_eqs::stype,aggregate<size_t>,typename Sys_eqs::b_grid::decomposition::extended_type> FDScheme< Sys_eqs >::g_map_type

Distributed grid map.

Definition at line 131 of file FDScheme.hpp.

◆ Sys_eqs_typ

template<typename Sys_eqs >
typedef Sys_eqs FDScheme< Sys_eqs >::Sys_eqs_typ

Type that specify the properties of the system of equations.

Definition at line 134 of file FDScheme.hpp.

◆ triplet

template<typename Sys_eqs >
typedef Sys_eqs::SparseMatrix_type::triplet_type FDScheme< Sys_eqs >::triplet
private

Sparse matrix triplet type.

Definition at line 202 of file FDScheme.hpp.

Constructor & Destructor Documentation

◆ FDScheme() [1/2]

template<typename Sys_eqs >
FDScheme< Sys_eqs >::FDScheme ( const Ghost< Sys_eqs::dims, long int > &  stencil,
const Box< Sys_eqs::dims, typename Sys_eqs::stype > &  domain,
const typename Sys_eqs::b_grid &  b_g 
)
inline

Constructor.

The periodicity is given by the grid b_g

Parameters
stencilmaximum extension of the stencil on each directions
domainthe domain
b_gobject grid that will store the solution

Definition at line 694 of file FDScheme.hpp.

◆ FDScheme() [2/2]

template<typename Sys_eqs >
FDScheme< Sys_eqs >::FDScheme ( Padding< Sys_eqs::dims > &  pd,
const Ghost< Sys_eqs::dims, long int > &  stencil,
const Box< Sys_eqs::dims, typename Sys_eqs::stype > &  domain,
const typename Sys_eqs::b_grid &  b_g 
)
inline

Constructor.

The periodicity is given by the grid b_g

Parameters
pdPadding, how many points out of boundary are present
stencilmaximum extension of the stencil on each directions
domainthe domain
b_gobject grid that will store the solution

Definition at line 712 of file FDScheme.hpp.

Member Function Documentation

◆ computeStag()

template<typename Sys_eqs >
void FDScheme< Sys_eqs >::computeStag ( )
inline

compute the staggered position for each property

This is compute from the value_type stored by Sys_eqs::b_grid::value_type the position of the staggered properties

Definition at line 652 of file FDScheme.hpp.

◆ consistency()

template<typename Sys_eqs >
void FDScheme< Sys_eqs >::consistency ( )
inlineprivate

Check if the Matrix is consistent.

Definition at line 297 of file FDScheme.hpp.

◆ construct_gmap()

template<typename Sys_eqs >
void FDScheme< Sys_eqs >::construct_gmap ( )
inlineprivate

Construct the gmap structure.

Definition at line 565 of file FDScheme.hpp.

◆ copy() [1/2]

template<typename Sys_eqs >
template<unsigned int ... pos, typename Vct , typename Grid_dst >
void FDScheme< Sys_eqs >::copy ( Vct &  v,
const long int(&)  start[Sys_eqs_typ::dims],
const long int(&)  stop[Sys_eqs_typ::dims],
Grid_dst &  g_dst 
)
inline

Copy the vector into the grid.

Copy the solution into the grid

Template Parameters
schemeDiscretization scheme
Grid_dsttype of the target grid
postarget properties
Parameters
vVector that contain the solution of the system
startpoint
stoppoint
g_dstDestination grid

Definition at line 1079 of file FDScheme.hpp.

◆ copy() [2/2]

template<typename Sys_eqs >
template<unsigned int ... pos, typename Vct , typename Grid_dst >
void FDScheme< Sys_eqs >::copy ( Vct &  v,
Grid_dst &  g_dst 
)
inline

Copy the vector into the grid.

Copy the solution into the grid

Template Parameters
schemeDiscretization scheme
Grid_dsttype of the target grid
postarget properties
Parameters
vVector that contain the solution of the system
g_dstDestination grid

Definition at line 1141 of file FDScheme.hpp.

◆ copy_normal()

template<typename Sys_eqs >
template<typename Vct , typename Grid_dst , unsigned int ... pos>
void FDScheme< Sys_eqs >::copy_normal ( Vct &  v,
Grid_dst &  g_dst 
)
inlineprivate

Copy a given solution vector in a normal grid.

Template Parameters
VctVector type
Grid_dsttarget grid
posset of property
Parameters
vVector
g_dsttarget normal grid

Definition at line 397 of file FDScheme.hpp.

◆ copy_staggered()

template<typename Sys_eqs >
template<typename Vct , typename Grid_dst , unsigned int ... pos>
void FDScheme< Sys_eqs >::copy_staggered ( Vct &  v,
Grid_dst &  g_dst,
grid_key_dx< Grid_dst::dims > &  start_d,
grid_key_dx< Grid_dst::dims > &  stop_d 
)
inlineprivate

Copy a given solution vector in a staggered grid.

Template Parameters
VctVector type
Grid_dsttarget grid
posset of properties
Parameters
vVector
g_dsttarget staggered grid

Definition at line 353 of file FDScheme.hpp.

◆ from_row_to_key()

template<typename Sys_eqs >
key_and_eq FDScheme< Sys_eqs >::from_row_to_key ( size_t  row)
inlineprivate

From the row Matrix position to the spatial position.

Parameters
rowMatrix row
Returns
spatial position + equation id

Definition at line 253 of file FDScheme.hpp.

◆ getA()

template<typename Sys_eqs >
Sys_eqs::SparseMatrix_type & FDScheme< Sys_eqs >::getA ( )
inline

produce the Matrix

Returns
the Sparse matrix produced

Definition at line 1036 of file FDScheme.hpp.

◆ getB()

template<typename Sys_eqs >
Sys_eqs::Vector_type & FDScheme< Sys_eqs >::getB ( )
inline

produce the B vector

Returns
the vector produced

Definition at line 1054 of file FDScheme.hpp.

◆ getMap()

template<typename Sys_eqs >
const g_map_type & FDScheme< Sys_eqs >::getMap ( )
inline

Return the map between the grid index position and the position in the distributed vector.

It is the map explained in the intro of the FDScheme

Returns
the map

Definition at line 680 of file FDScheme.hpp.

◆ getPadding()

template<typename Sys_eqs >
const Padding< Sys_eqs::dims > & FDScheme< Sys_eqs >::getPadding ( )
inline

Get the specified padding.

Returns
the padding specified

Definition at line 668 of file FDScheme.hpp.

◆ impose()

template<typename Sys_eqs >
template<typename T >
void FDScheme< Sys_eqs >::impose ( const T &  op,
typename Sys_eqs::stype  num,
long int  id,
const long int(&)  start[Sys_eqs::dims],
const long int(&)  stop[Sys_eqs::dims],
bool  skip_first = false 
)
inline

Impose an operator.

This function impose an operator on a box region to produce the system

Ax = b

Stokes equation, lid driven cavity with one splipping wall

Parameters
opOperator to impose (A term)
numright hand side of the term (b term)
idEquation id in the system that we are imposing
startstarting point of the box
stopstop point of the box
skip_firstskip the first point

Definition at line 738 of file FDScheme.hpp.

◆ impose_dit() [1/3]

template<typename Sys_eqs >
template<unsigned int prp, typename T , typename b_term , typename iterator >
void FDScheme< Sys_eqs >::impose_dit ( const T &  op,
b_term &  b_t,
const iterator &  it_d,
long int  id = 0 
)
inline

Impose an operator.

This function impose an operator on a particular grid region to produce the system

Ax = b

Stokes equation 2D, lid driven cavity with one splipping wall

Parameters
opOperator to impose (A term)
numright hand side of the term (b term)
idEquation id in the system that we are imposing
it_diterator that define where you want to impose

Definition at line 1018 of file FDScheme.hpp.

◆ impose_dit() [2/3]

template<typename Sys_eqs >
template<typename T , typename bop , typename iterator >
void FDScheme< Sys_eqs >::impose_dit ( const T &  op,
bop  num,
long int  id,
const iterator &  it_d 
)
inlineprivate

Impose an operator.

This function impose an operator on a particular grid region to produce the system

Ax = b

Stokes equation 2D, lid driven cavity with one splipping wall

Parameters
opOperator to impose (A term)
numright hand side of the term (b term)
idEquation id in the system that we are imposing
it_diterator that define where you want to impose

Definition at line 495 of file FDScheme.hpp.

◆ impose_dit() [3/3]

template<typename Sys_eqs >
template<typename T >
void FDScheme< Sys_eqs >::impose_dit ( const T &  op,
typename Sys_eqs::stype  num,
long int  id,
grid_dist_iterator_sub< Sys_eqs::dims, typename g_map_type::d_grid it_d 
)
inline

Impose an operator.

This function impose an operator on a particular grid region to produce the system

Ax = b

Stokes equation 2D, lid driven cavity with one splipping wall

Parameters
opOperator to impose (A term)
numright hand side of the term (b term)
idEquation id in the system that we are imposing
it_diterator that define where you want to impose

Definition at line 828 of file FDScheme.hpp.

◆ impose_dit_b() [1/2]

template<typename Sys_eqs >
template<unsigned int prp, typename b_term , typename iterator >
void FDScheme< Sys_eqs >::impose_dit_b ( b_term &  b_t,
const iterator &  it_d,
long int  id = 0 
)
inline

Impose an operator.

This function impose an operator on a particular grid region to produce the system

Ax = b

Stokes equation 2D, lid driven cavity with one splipping wall

Parameters
opOperator to impose (A term)
numright hand side of the term (b term)
idEquation id in the system that we are imposing
it_diterator that define where you want to impose

Definition at line 804 of file FDScheme.hpp.

◆ impose_dit_b() [2/2]

template<typename Sys_eqs >
template<typename bop , typename iterator >
void FDScheme< Sys_eqs >::impose_dit_b ( bop  num,
long int  id,
const iterator &  it_d 
)
inlineprivate

Impose an operator.

This function the RHS no matrix is imposed. This function is usefull if the Matrix has been constructed and only the right hand side b must be changed

Ax = b

Parameters
numright hand side of the term (b term)
idEquation id in the system that we are imposing
it_diterator that define where you want to impose

Definition at line 454 of file FDScheme.hpp.

◆ impose_git()

template<typename Sys_eqs >
template<typename T , typename bop , typename iterator >
void FDScheme< Sys_eqs >::impose_git ( const T &  op,
bop  num,
long int  id,
const iterator &  it_d,
bool  skip_first = false 
)
inline

Impose an operator.

This function impose an operator on a particular grid region to produce the system

Ax = b

Stokes equation 2D, lid driven cavity with one splipping wall

Parameters
opOperator to impose (A term)
numright hand side of the term (b term)
idEquation id in the system that we are imposing
it_diterator that define where you want to impose

Definition at line 929 of file FDScheme.hpp.

◆ impose_git_gmap()

template<typename Sys_eqs >
template<typename T , typename bop , typename iterator >
void FDScheme< Sys_eqs >::impose_git_gmap ( const T &  op,
bop  num,
long int  id,
iterator &  it 
)
inline

Impose an operator.

This function impose an operator on a particular grid region to produce the system

Ax = b

Stokes equation 2D, lid driven cavity with one splipping wall

Parameters
opOperator to impose (A term)
numright hand side of the term (b term)
idEquation id in the system that we are imposing
it_diterator that define where you want to impose

Definition at line 853 of file FDScheme.hpp.

◆ Initialize()

template<typename Sys_eqs >
void FDScheme< Sys_eqs >::Initialize ( const Box< Sys_eqs::dims, typename Sys_eqs::stype > &  domain)
inlineprivate

\initialize the object FDScheme

Parameters
domainsimulation domain

Definition at line 611 of file FDScheme.hpp.

◆ new_A()

template<typename Sys_eqs >
void FDScheme< Sys_eqs >::new_A ( )
inline

In case we want to impose a new A re-using FDScheme we have to call This function.

Definition at line 785 of file FDScheme.hpp.

◆ new_b()

template<typename Sys_eqs >
void FDScheme< Sys_eqs >::new_b ( )
inline

In case we want to impose a new b re-using FDScheme we have to call This function.

Definition at line 778 of file FDScheme.hpp.

◆ padding()

template<typename Sys_eqs >
const std::vector< size_t > FDScheme< Sys_eqs >::padding ( const size_t(&)  sz[Sys_eqs::dims],
Padding< Sys_eqs::dims > &  pd 
)
inlineprivate

calculate the mapping grid size with padding

Parameters
szoriginal grid size
pdpadding
Returns
padded grid size

Definition at line 284 of file FDScheme.hpp.

◆ setStagPos()

template<typename Sys_eqs >
void FDScheme< Sys_eqs >::setStagPos ( comb< Sys_eqs::dims >(&)  sp[Sys_eqs::nvar])
inline

set the staggered position for each property

Parameters
spvector containing the staggered position for each property

Definition at line 639 of file FDScheme.hpp.

Field Documentation

◆ A

template<typename Sys_eqs >
Sys_eqs::SparseMatrix_type FDScheme< Sys_eqs >::A

type of the sparse matrix

Definition at line 1029 of file FDScheme.hpp.

◆ b

template<typename Sys_eqs >
Sys_eqs::Vector_type FDScheme< Sys_eqs >::b
private

Vector b.

Definition at line 205 of file FDScheme.hpp.

◆ g_map

template<typename Sys_eqs >
g_map_type FDScheme< Sys_eqs >::g_map
private

mapping grid

Definition at line 214 of file FDScheme.hpp.

◆ gs

template<typename Sys_eqs >
const grid_sm<Sys_eqs::dims,void>& FDScheme< Sys_eqs >::gs
private

Domain Grid informations.

Definition at line 208 of file FDScheme.hpp.

◆ pd

template<typename Sys_eqs >
Padding<Sys_eqs::dims> FDScheme< Sys_eqs >::pd
private

Padding.

Definition at line 199 of file FDScheme.hpp.

◆ pnt

template<typename Sys_eqs >
openfpm::vector<size_t> FDScheme< Sys_eqs >::pnt
private

Grid points that has each processor.

Definition at line 223 of file FDScheme.hpp.

◆ row

template<typename Sys_eqs >
size_t FDScheme< Sys_eqs >::row
private

row of the matrix

Definition at line 217 of file FDScheme.hpp.

◆ row_b

template<typename Sys_eqs >
size_t FDScheme< Sys_eqs >::row_b
private

row on b

Definition at line 220 of file FDScheme.hpp.

◆ s_pnt

template<typename Sys_eqs >
size_t FDScheme< Sys_eqs >::s_pnt
private

Each point in the grid has a global id, to decompose correctly the Matrix each processor contain a contiguos range of global id, example processor 0 can have from 0 to 234 and processor 1 from 235 to 512 no processors can have holes in the sequence, this number indicate where the sequence start for this processor

Definition at line 232 of file FDScheme.hpp.

◆ s_pos

template<typename Sys_eqs >
comb<Sys_eqs::dims> FDScheme< Sys_eqs >::s_pos[Sys_eqs::nvar]
private

Staggered position for each property.

Definition at line 226 of file FDScheme.hpp.

◆ spacing

template<typename Sys_eqs >
Sys_eqs::stype FDScheme< Sys_eqs >::spacing[Sys_eqs::dims]
private

Get the grid spacing.

Definition at line 211 of file FDScheme.hpp.


The documentation for this class was generated from the following file: