A Two Dimensional Active Fluid Solver
In this example, we perform time integration in a 2d domain of particles of the following Active Fluid partial differential equation:
\[
\frac{\mathrm{D} p_{\alpha}}{\mathrm{D} t}=\frac{h_{\alpha}}{\gamma}-\nu u_{\alpha \beta} p_{\beta}+\lambda\Delta\mu p_\alpha+
\omega_{\alpha \beta} p_{\beta}\\
\partial_{\beta} \sigma_{\alpha \beta}-\partial_{\alpha} \Pi=0 \\
\partial_{\gamma} v_{\gamma}=0\\
2 \eta u_{\alpha \beta}=\sigma_{\alpha \beta}^{(s)}+\zeta \Delta \mu\left(p_{\alpha} p_{\beta}-\frac{1}{2} p_{\gamma} p_{\gamma} \delta_{\alpha \beta}\right)
-\frac{\nu}{2}\left(p_{\alpha} h_{\beta}+p_{\beta} h_{\alpha}-p_{\gamma} h_{\gamma} \delta_{\alpha \beta}\right)
\]
It is highly recommended to go through the Odeint Example and the Pressure correction Stokes-Flow example to understand this code.
We employ a Lagrangian frame of reference for polarity time evolution. Hence the PDE is transformed to a system of PDEs:
\[\begin{align}
\frac{\partial\vec{X}}{dt}=\vec{V}\\
\frac{\partial p_\alpha}{dt}=\frac{h_{\alpha}}{\gamma}-\nu u_{\alpha \beta} p_{\beta}+\lambda\Delta\mu p_\alpha+
\omega_{\alpha \beta} p_{\beta}
\end{align} \]
Where \(\vec{X}\) is the position vector. Hence, we have decoupled the moving of the particles from the evolution of the Polarity. As it can be expensive to recompute derivatives at every stage of a time integrator in a single step, we will integrate the PDEs with seperate techniques (Euler step for moving the particles and solving the force balance for advection).
Output: Time series data of the PDE Solution.
Including the headers
These are the header files that we need to include:
#include "config.h"
#define BOOST_MPL_CFG_NO_PREPROCESSED_HEADERS
#define BOOST_MPL_LIMIT_VECTOR_SIZE 40
#include <iostream>
#include "DCPSE/DCPSE_op/DCPSE_op.hpp"
#include "DCPSE/DCPSE_op/DCPSE_Solver.hpp"
#include "Operators/Vector/vector_dist_operators.hpp"
#include "Vector/vector_dist_subset.hpp"
#include "DCPSE/DCPSE_op/EqnsStruct.hpp"
#include "OdeIntegrators/OdeIntegrators.hpp"
Initialization of the global parameters
We start with
- Initializing certain global parameteres we will use: such as x,y to refer to the dimensions 0 and 1. (Makes it easier to read equations in code)
- Creating empty pointers for coupling openfpm distributed vector with odeint. One for the entire distributed vector and another for the subset or bulk. We seperate bulk and the entire distribution as it makes it easier to impose boundary conditions. (Which will be more apparant in ComputeRHS of the PDE) Note that a subset expression always comes at the left hand side of a computation. (The semantics of the expressions is by denoting what we want to update from regular expressions)
Creating aliases of the types of the datasructures we are going to use in OpenFPM. Property_type as the type of properties we wish to use. dist_vector_type as the 2d openfpm distributed vector type dist_vector_type as the 2d openfpm distributed subset vector type
constexpr int x = 0;
constexpr int y = 1;
constexpr int POLARIZATION= 0,VELOCITY = 1, VORTICITY = 2, EXTFORCE = 3,PRESSURE = 4, STRAIN_RATE = 5, STRESS = 6, MOLFIELD = 7, DPOL = 8, DV = 9, VRHS = 10, F1 = 11, F2 = 12, F3 = 13, F4 = 14, F5 = 15, F6 = 16, V_T = 17, DIV = 18, DELMU = 19, HPB = 20, FE = 21, R = 22;
double nu = -0.5;
double gama = 0.1;
double zeta = 0.07;
double Ks = 1.0;
double Kb = 1.0;
double lambda = 0.1;
int wr_f;
int wr_at;
double V_err_eps;
void *vectorGlobal=nullptr,*vectorGlobal_bulk=nullptr,*vectorGlobal_boundary=nullptr;
PropNAMES={"00-Polarization","01-Velocity","02-Vorticity","03-ExternalForce","04-Pressure","05-StrainRate","06-Stress","07-MolecularField","08-DPOL","09-DV","10-VRHS","11-f1","12-f2","13-f3","14-f4","15-f5","16-f6","17-V_T","18-DIV","19-DELMU","20-HPB","21-FrankEnergy","22-R"};
typedef aggregate<VectorS<2, double>,
VectorS<2, double>,
double[2][2],
VectorS<2, double>,double,
double[2][2],
double[2][2],
VectorS<2, double>,
VectorS<2, double>,
VectorS<2, double>,
VectorS<2, double>,double,double,double,double,double,double,
VectorS<2, double>,double,double,double,double,
double>
Activegels;
This class implement the point shape in an N-dimensional space.
Implementation of 1-D std::vector like structure.
aggregate of properties, from a list of object if create a struct that follow the OPENFPM native stru...
[Definition of the system]
Creating the RHS Functor
Odeint works with certain specific state_types. We offer certain state types such as 'state_type_2d_ofp' for making openfpm work with odeint.
Now we create the RHS functor. Please refer to ODE_int for more detials. Note that we have templated it with two operator types DXX and DYY as we need to compute Laplacian at each stage. We will pass the DCPSE operators to an instance of this functor.
All RHS computations needs to happen in the operator (). Odeint expects the arguments here to be an input state_type X, an output state_tyoe dxdt and time t. We pass on the openfpm distributed state types as void operator()( const state_type_2d_ofp &X , state_type_2d_ofp &dxdt , const double t ) const
Since we would like to use openfpm here. We cast back the global pointers created before to access the Openfpm distributed vector here. (Note that these pointers needs to initialized in the main(). Further, 'state_type_2d_ofp' is a temporal structure, which means it does not have the ghost. Hence we copy the current state back to the openfpm vector from the openfpm state type X. We do our computations as required. Then we copy back the output into the state_type dxdt)
template<typename DX,typename DY,typename DXX,typename DXY,typename DYY>
{
DX &Dx;
DY &Dy;
DXX &Dxx;
DXY &Dxy;
DYY &Dyy;
PolarEv(DX &Dx,DY &Dy,DXX &Dxx,DXY &Dxy,DYY &Dyy):Dx(Dx),Dy(Dy),Dxx(Dxx),Dxy(Dxy),Dyy(Dyy)
{}
{
auto Pol=getV<POLARIZATION>(Particles);
auto Pol_bulk=getV<POLARIZATION>(Particles_bulk);
auto h = getV<MOLFIELD>(Particles);
auto u = getV<STRAIN_RATE>(Particles);
auto dPol = getV<DPOL>(Particles);
auto W = getV<VORTICITY>(Particles);
auto delmu = getV<DELMU>(Particles);
auto H_p_b = getV<HPB>(Particles);
auto r = getV<R>(Particles);
auto dPol_bulk = getV<DPOL>(Particles_bulk);
Pol[x]=X.data.get<0>();
Pol[y]=X.data.get<1>();
Particles.
ghost_get<POLARIZATION>(SKIP_LABELLING);
H_p_b = Pol[x] * Pol[x] + Pol[y] * Pol[y];
h[y] = (Pol[x] * (Ks * Dyy(Pol[y]) + Kb * Dxx(Pol[y]) + (Ks - Kb) * Dxy(Pol[x])) -
Pol[y] * (Ks * Dxx(Pol[x]) + Kb * Dyy(Pol[x]) + (Ks - Kb) * Dxy(Pol[y])));
h[x] = -gama * (lambda * delmu - nu * (u[x][x] * Pol[x] * Pol[x] + u[y][y] * Pol[y] * Pol[y] + 2 * u[x][y] * Pol[x] * Pol[y]) / (H_p_b));
dPol_bulk[x] = ((h[x] * Pol[x] - h[y] * Pol[y]) / gama + lambda * delmu * Pol[x] -
nu * (u[x][x] * Pol[x] + u[x][y] * Pol[y]) + W[x][x] * Pol[x] +
W[x][y] * Pol[y]);
dPol_bulk[y] = ((h[x] * Pol[y] + h[y] * Pol[x]) / gama + lambda * delmu * Pol[y] -
nu * (u[y][x] * Pol[x] + u[y][y] * Pol[y]) + W[y][x] * Pol[x] +
W[y][y] * Pol[y]);
dxdt.data.get<0>()=dPol[x];
dxdt.data.get<1>()=dPol[y];
}
};
void ghost_get(size_t opt=WITH_POSITION)
It synchronize the properties and position of the ghost particles.
A 2d Odeint and Openfpm compatible structure.
Creating the Observer Functor
There are multiple ways in which the system can be integrated. For example, and ideally, we could put both the PDEs into the RHS functor (Moving the particles at every stage). This can be expensive. However, Often in numerical simulations, Both the PDEs can be integrated with seperate steppers. To achieve this we will use the observer functor. The observer functor is called before every time step evolution by odeint. Hence we can use it to update the position of the particles, with an euler step. and also update the operators and solve the force balance equations below.
\[
\eta \partial_{x}^{2} v_{\mathrm{x}}+\eta \partial_{y}^{2} v_{\mathrm{x}}-\partial_{x} \Pi+\frac{\nu}{2} \partial_{x}\left[\frac{\gamma \nu u_\mathrm{x x} p_{\mathrm{x}}^{2}\left(p_{\mathrm{x}}^{2}-p_{\mathrm{y}}^{2}\right)}{p_{\mathrm{x}}^{2}+p_{\mathrm{y}}^{2}}\right]+
\frac{\nu}{2} \partial_{x}\left[\frac{2 \gamma \nu u_{\mathrm{xy}} p_{\mathrm{x}} p_{\mathrm{y}}\left(p_{\mathrm{x}}^{2}-p_{\mathrm{y}}^{2}\right)}{p_{\mathrm{x}}^{2}+p_{\mathrm{y}}^{2}}\right]
+\frac{\nu}{2} \partial_{x}\left[\frac{\gamma \nu u_{\mathrm{yy}} p_{\mathrm{y}}^{2}\left(p_{\mathrm{x}}^{2}-p_{\mathrm{y}}^{2}\right)}{p_{\mathrm{x}}^{2}+p_{\mathrm{y}}^{2}}\right] +
\frac{\nu}{2} \partial_{y}\left[\frac{2 \gamma \nu u_{\mathrm{xx}} p_{\mathrm{x}}^{3} p_{\mathrm{y}}}{p_{\mathrm{x}}^{2}+p_{\mathrm{y}}^{2}}\right]+\frac{\nu}{2} \partial_{y}\left[\frac{4 \gamma \nu u_{\mathrm{xy}} p_{\mathrm{x}}^{2} p_{\mathrm{y}}^{2}}{p_{\mathrm{x}}^{2}+p_{\mathrm{y}}^{2}}\right]+\frac{\nu}{2} \partial_{y}\left[\frac{2 \gamma \nu u_{\mathrm{yy}} p_{\mathrm{x}} p_{\mathrm{y}}^{3}}{p_{\mathrm{x}}^{2}+p_{\mathrm{y}}^{2}}\right] \\
=-\frac{1}{2} \partial_{y}\left(h_{\perp}\right)+\zeta \partial_{x}\left(\Delta \mu p_{\mathrm{x}}^{2}\right)+\zeta \partial_{y}\left(\Delta \mu p_{\mathrm{x}} p_{\mathrm{y}}\right)-
\zeta \partial_{x}\left(\Delta \mu \frac{p_{\mathrm{x}}^{2}+p_{\mathrm{y}}^{2}}{2}\right)- \frac{\nu}{2} \partial_{x}\left(-2 h_{\perp} p_{\mathrm{x}} p_{\mathrm{y}}\right) -
\quad \frac{\nu}{2} \partial_{y}\left[h_{\perp}\left(p_{\mathrm{x}}^{2}-p_{\mathrm{y}}^{2}\right)\right]-\partial_{x} \sigma_{\mathrm{xx}}^{(\mathrm{e})}-\partial_{y} \sigma_{\mathrm{xy}}^{(\mathrm{e})} +
\quad \frac{\nu}{2} \partial_{x}\left[\gamma \lambda \Delta \mu\left(p_{\mathrm{x}}^{2}-p_{\mathrm{y}}^{2}\right)\right]-\frac{\nu}{2} \partial_{y}\left(-2 \gamma \lambda \Delta \mu p_{\mathrm{x}} p_{\mathrm{y}}\right),
\\
\eta \partial_{x}^{2} v_{\mathrm{y}}+\eta \partial_{y}^{2} v_{\mathrm{y}}-\partial_{y} \Pi+\frac{\nu}{2} \partial_{y}\left[\frac{-\gamma \nu u_{\mathrm{xx}} p_{\mathrm{x}}^{2}\left(p_{\mathrm{x}}^{2}-p_{\mathrm{y}}^{2}\right)}{p_{\mathrm{x}}^{2}+p_{\mathrm{y}}^{2}}\right] +
\frac{\nu}{2} \partial_{y}\left[\frac{-2 \gamma \nu u_{\mathrm{xy}} p_{\mathrm{x}} p_{\mathrm{y}}\left(p_{\mathrm{x}}^{2}-p_{\mathrm{y}}^{2}\right)}{p_{\mathrm{x}}^{2}+p_{\mathrm{y}}^{2}}\right]
+\frac{\nu}{2} \partial_{y}\left[\frac{-\gamma \nu u_{\mathrm{yy}} p_{\mathrm{y}}^{2}\left(p_{\mathrm{x}}^{2}-p_{\mathrm{y}}^{2}\right)}{p_{\mathrm{x}}^{2}+p_{\mathrm{y}}^{2}}\right] +
\frac{\nu}{2} \partial_{x}\left[\frac{2 \gamma \nu u_{\mathrm{x} x} p_{\mathrm{x}}^{3} p_{\mathrm{y}}}{p_{\mathrm{x}}^{2}+p_{\mathrm{y}}^{2}}\right]+\frac{\nu}{2} \partial_{x}\left[\frac{4 \gamma \nu u_{\mathrm{xx}} p_{\mathrm{x}}^{2} p_{\mathrm{y}}^{2}}{p_{\mathrm{x}}^{2}+p_{\mathrm{y}}^{2}}\right]+\frac{\nu}{2} \partial_{x}\left[\frac{2 \gamma\nu u_{\mathrm{yy}} p_{\mathrm{x}} p_{\mathrm{y}}^{3}}{p_{\mathrm{x}}^{2}+p_{\mathrm{y}}^{2}}\right] \\
=-\frac{1}{2} \partial_{x}\left(-h_{\perp}\right)+\zeta \partial_{y}\left(\Delta \mu p_{\mathrm{y}}^{2}\right)+\zeta \partial_{x}\left(\Delta \mu p_{\mathrm{x}} p_{\mathrm{y}}\right)-
\zeta \partial_{y}\left(\Delta \mu \frac{p_{\mathrm{x}}^{2}+p_{\mathrm{y}}^{2}}{2}\right)-\frac{\nu}{2} \partial_{y}\left(2 h_{\perp} p_{\mathrm{x}} p_{\mathrm{y}}\right) -
\frac{\nu}{2} \partial_{x}\left[h_{\perp}\left(p_{\mathrm{x}}^{2}-p_{\mathrm{y}}^{2}\right)\right]-\partial_{x} \sigma_{\mathrm{yx}}^{(\mathrm{e})}-\partial_{y} \sigma_{\mathrm{yy}}^{(\mathrm{e})}-
\frac{\nu}{2} \partial_{y}\left[\gamma \lambda \Delta \mu\left(p_{\mathrm{x}}^{2}-p_{\mathrm{y}}^{2}\right)\right]-\frac{\nu}{2} \partial_{x}\left(-2 \gamma \lambda \Delta \mu p_{\mathrm{x}} p_{\mathrm{y}}\right).
\]
Now we create the Observer functor that will calculate velocity. Note that we have templated it with Differential operators of types DXX and so on. We use them to solve force balance. We further update them after moving the particles.
All Observer computations needs to happen in the operator (). Odeint expects the arguments here to be an input state_type X, and time t. We pass on the openfpm distributed state types as void operator()( const state_type_2d_ofp &X , const double t ) const
Since we would like to use again openfpm here. We cast back the global pointers created before to access the Openfpm distributed vector here. (Note that these pointers needs to initialized in the main(). Further, 'state_type_2d_ofp' is a temporal structure, which means it does not have the ghost. Hence we copy the current state back to the openfpm vector from the openfpm state type X. We do our computations as required. Then we copy back the output into the state_type dxdt.
template<typename DX,typename DY,typename DXX,typename DXY,typename DYY>
{
DX &Dx, &Bulk_Dx;
DY &Dy, &Bulk_Dy;
DXX &Dxx;
DXY &Dxy;
DYY &Dyy;
double t_old;
int ctr;
CalcVelocity(DX &Dx,DY &Dy,DXX &Dxx,DXY &Dxy,DYY &Dyy,DX &Bulk_Dx,DY &Bulk_Dy):Dx(Dx),Dy(Dy),Dxx(Dxx),Dxy(Dxy),Dyy(Dyy),Bulk_Dx(Bulk_Dx),Bulk_Dy(Bulk_Dy)
{
t_old = 0.0;
ctr = 0;
}
{
double dt = t - t_old;
auto &v_cl = create_vcluster();
auto Pos = getV<PROP_POS>(Particles);
auto Pol=getV<POLARIZATION>(Particles);
auto V = getV<VELOCITY>(Particles);
auto H_p_b = getV<HPB>(Particles);
if (dt != 0) {
H_p_b = sqrt(Pol[x] * Pol[x] + Pol[y] * Pol[y]);
Pol = Pol / H_p_b;
Pos = Pos + (t-t_old)*V;
Particles.
ghost_get<POLARIZATION, EXTFORCE, DELMU>();
Dx.update(Particles);
Dy.update(Particles);
Dxy.update(Particles);
Dxx.update(Particles);
Dyy.update(Particles);
Bulk_Dx.update(Particles_bulk);
Bulk_Dy.update(Particles_bulk);
state.data.get<0>()=Pol[x];
state.data.get<1>()=Pol[y];
if (v_cl.rank() == 0) {
std::cout <<
"Updating operators took " << tt.
getwct() <<
" seconds." << std::endl;
std::cout << "Time step " << ctr << " : " << t << " over." << std::endl;
std::cout << "----------------------------------------------------------" << std::endl;
}
ctr++;
}
auto Dyx = Dxy;
t_old = t;
auto & bulk = Particles_bulk.
getIds();
auto & boundary = Particles_boundary.
getIds();
auto Pol_bulk=getV<POLARIZATION>(Particles_bulk);
auto sigma = getV<STRESS>(Particles);
auto r = getV<R>(Particles);
auto h = getV<MOLFIELD>(Particles);
auto FranckEnergyDensity = getV<FE>(Particles);
auto f1 = getV<F1>(Particles);
auto f2 = getV<F2>(Particles);
auto f3 = getV<F3>(Particles);
auto f4 = getV<F4>(Particles);
auto f5 = getV<F5>(Particles);
auto f6 = getV<F6>(Particles);
auto dV = getV<DV>(Particles);
auto delmu = getV<DELMU>(Particles);
auto g = getV<EXTFORCE>(Particles);
auto P = getV<PRESSURE>(Particles);
auto P_bulk = getV<PRESSURE>(Particles_bulk);
auto RHS = getV<VRHS>(Particles);
auto RHS_bulk = getV<VRHS>(Particles_bulk);
auto div = getV<DIV>(Particles);
auto V_t = getV<V_T>(Particles);
auto u = getV<STRAIN_RATE>(Particles);
auto W = getV<VORTICITY>(Particles);
Pol_bulk[x]=state.data.get<0>();
Pol_bulk[y]=state.data.get<1>();
Particles.
ghost_get<POLARIZATION>(SKIP_LABELLING);
x_comp.setId(0);
y_comp.setId(1);
int n = 0,nmax = 300,errctr = 0, Vreset = 0;
double V_err = 1,V_err_eps = 5 * 1e-3, V_err_old,
sum, sum1;
std::cout << "Calculate velocity (step t=" << t << ")" << std::endl;
solverPetsc.setSolver(KSPGMRES);
solverPetsc.setPreconditioner(PCJACOBI);
Particles.
ghost_get<POLARIZATION>(SKIP_LABELLING);
sigma[x][x] =
-Ks * Dx(Pol[x]) * Dx(Pol[x]) - Kb * Dx(Pol[y]) * Dx(Pol[y]) + (Kb - Ks) * Dy(Pol[x]) * Dx(Pol[y]);
sigma[x][y] =
-Ks * Dy(Pol[y]) * Dx(Pol[y]) - Kb * Dy(Pol[x]) * Dx(Pol[x]) + (Kb - Ks) * Dx(Pol[y]) * Dx(Pol[x]);
sigma[y][x] =
-Ks * Dx(Pol[x]) * Dy(Pol[x]) - Kb * Dx(Pol[y]) * Dy(Pol[y]) + (Kb - Ks) * Dy(Pol[x]) * Dy(Pol[y]);
sigma[y][y] =
-Ks * Dy(Pol[y]) * Dy(Pol[y]) - Kb * Dy(Pol[x]) * Dy(Pol[x]) + (Kb - Ks) * Dx(Pol[y]) * Dy(Pol[x]);
r = Pol[x] * Pol[x] + Pol[y] * Pol[y];
for (int j = 0; j < bulk.size(); j++) {
auto p = bulk.get<0>(j);
Particles.
getProp<R>(p) = (Particles.
getProp<R>(p) == 0) ? 1 : Particles.getProp<R>(p);
}
for (int j = 0; j < boundary.size(); j++) {
auto p = boundary.get<0>(j);
Particles.
getProp<R>(p) = (Particles.
getProp<R>(p) == 0) ? 1 : Particles.getProp<R>(p);
}
h[y] = (Pol[x] * (Ks * Dyy(Pol[y]) + Kb * Dxx(Pol[y]) + (Ks - Kb) * Dxy(Pol[x])) -
Pol[y] * (Ks * Dxx(Pol[x]) + Kb * Dyy(Pol[x]) + (Ks - Kb) * Dxy(Pol[y])));
Particles.
ghost_get<MOLFIELD>(SKIP_LABELLING);
FranckEnergyDensity = (Ks / 2.0) *
((Dx(Pol[x]) * Dx(Pol[x])) + (Dy(Pol[x]) * Dy(Pol[x])) +
(Dx(Pol[y]) * Dx(Pol[y])) +
(Dy(Pol[y]) * Dy(Pol[y]))) +
((Kb - Ks) / 2.0) * ((Dx(Pol[y]) - Dy(Pol[x])) * (Dx(Pol[y]) - Dy(Pol[x])));
f1 = gama * nu * Pol[x] * Pol[x] * (Pol[x] * Pol[x] - Pol[y] * Pol[y]) / (r);
f2 = 2.0 * gama * nu * Pol[x] * Pol[y] * (Pol[x] * Pol[x] - Pol[y] * Pol[y]) / (r);
f3 = gama * nu * Pol[y] * Pol[y] * (Pol[x] * Pol[x] - Pol[y] * Pol[y]) / (r);
f4 = 2.0 * gama * nu * Pol[x] * Pol[x] * Pol[x] * Pol[y] / (r);
f5 = 4.0 * gama * nu * Pol[x] * Pol[x] * Pol[y] * Pol[y] / (r);
f6 = 2.0 * gama * nu * Pol[x] * Pol[y] * Pol[y] * Pol[y] / (r);
Particles.
ghost_get<F1, F2, F3, F4, F5, F6>(SKIP_LABELLING);
texp_v<double> Dxf1 = Dx(f1),Dxf2 = Dx(f2),Dxf3 = Dx(f3),Dxf4 = Dx(f4),Dxf5 = Dx(f5),Dxf6 = Dx(f6),
Dyf1 = Dy(f1),Dyf2 = Dy(f2),Dyf3 = Dy(f3),Dyf4 = Dy(f4),Dyf5 = Dy(f5),Dyf6 = Dy(f6);
dV[x] = -0.5 * Dy(h[y]) + zeta * Dx(delmu * Pol[x] * Pol[x]) + zeta * Dy(delmu * Pol[x] * Pol[y]) -
zeta * Dx(0.5 * delmu * (Pol[x] * Pol[x] + Pol[y] * Pol[y])) -
0.5 * nu * Dx(-2.0 * h[y] * Pol[x] * Pol[y])
- 0.5 * nu * Dy(h[y] * (Pol[x] * Pol[x] - Pol[y] * Pol[y])) - Dx(sigma[x][x]) -
Dy(sigma[x][y]) -
g[x]
- 0.5 * nu * Dx(-gama * lambda * delmu * (Pol[x] * Pol[x] - Pol[y] * Pol[y]))
- 0.5 * Dy(-2.0 * gama * lambda * delmu * (Pol[x] * Pol[y]));
dV[y] = -0.5 * Dx(-h[y]) + zeta * Dy(delmu * Pol[y] * Pol[y]) + zeta * Dx(delmu * Pol[x] * Pol[y]) -
zeta * Dy(0.5 * delmu * (Pol[x] * Pol[x] + Pol[y] * Pol[y])) -
0.5 * nu * Dy(2.0 * h[y] * Pol[x] * Pol[y])
- 0.5 * nu * Dx(h[y] * (Pol[x] * Pol[x] - Pol[y] * Pol[y])) - Dx(sigma[y][x]) -
Dy(sigma[y][y]) -
g[y]
- 0.5 * nu * Dy(gama * lambda * delmu * (Pol[x] * Pol[x] - Pol[y] * Pol[y]))
- 0.5 * Dx(-2.0 * gama * lambda * delmu * (Pol[x] * Pol[y]));
auto Stokes1 =
eta * (Dxx(V[x]) + Dyy(V[x]))
+ 0.5 * nu * (Dxf1 * Dx(V[x]) + f1 * Dxx(V[x]))
+ 0.5 * nu * (Dxf2 * 0.5 * (Dx(V[y]) + Dy(V[x])) + f2 * 0.5 * (Dxx(V[y]) + Dyx(V[x])))
+ 0.5 * nu * (Dxf3 * Dy(V[y]) + f3 * Dyx(V[y]))
+ 0.5 * nu * (Dyf4 * Dx(V[x]) + f4 * Dxy(V[x]))
+ 0.5 * nu * (Dyf5 * 0.5 * (Dx(V[y]) + Dy(V[x])) + f5 * 0.5 * (Dxy(V[y]) + Dyy(V[x])))
+ 0.5 * nu * (Dyf6 * Dy(V[y]) + f6 * Dyy(V[y]));
auto Stokes2 =
eta * (Dxx(V[y]) + Dyy(V[y]))
- 0.5 * nu * (Dyf1 * Dx(V[x]) + f1 * Dxy(V[x]))
- 0.5 * nu * (Dyf2 * 0.5 * (Dx(V[y]) + Dy(V[x])) + f2 * 0.5 * (Dxy(V[y]) + Dyy(V[x])))
- 0.5 * nu * (Dyf3 * Dy(V[y]) + f3 * Dyy(V[y]))
+ 0.5 * nu * (Dxf4 * Dx(V[x]) + f4 * Dxx(V[x]))
+ 0.5 * nu * (Dxf5 * 0.5 * (Dx(V[y]) + Dy(V[x])) + f5 * 0.5 * (Dxx(V[y]) + Dyx(V[x])))
+ 0.5 * nu * (Dxf6 * Dy(V[y]) + f6 * Dyx(V[y]));
std::cout <<
"Init of Velocity took " << tt.
getwct() <<
" seconds." << std::endl;
V_err = 1;
n = 0;
errctr = 0;
if (Vreset == 1) {
Vreset = 0;
}
Particles.
ghost_get<PRESSURE>(SKIP_LABELLING);
RHS_bulk[x] = dV[x] + Bulk_Dx(
P);
RHS_bulk[y] = dV[y] + Bulk_Dy(
P);
DCPSE_scheme<equations2d2, vector_type> Solver(Particles);
Solver.impose(Stokes1, bulk, RHS[0], x_comp);
Solver.impose(Stokes2, bulk, RHS[1], y_comp);
Solver.impose(V[x], boundary, 0, x_comp);
Solver.impose(V[y], boundary, 0, y_comp);
Solver.solve_with_solver(solverPetsc, V[x], V[y]);
Particles.
ghost_get<VELOCITY>(SKIP_LABELLING);
div = -(Dx(V[x]) + Dy(V[y]));
while (V_err >= V_err_eps && n <= nmax) {
Particles.
ghost_get<PRESSURE>(SKIP_LABELLING);
RHS_bulk[x] = dV[x] + Bulk_Dx(
P);
RHS_bulk[y] = dV[y] + Bulk_Dy(
P);
Solver.reset_b();
Solver.impose_b(bulk, RHS[0], x_comp);
Solver.impose_b(bulk, RHS[1], y_comp);
Solver.impose_b(boundary, 0, x_comp);
Solver.impose_b(boundary, 0, y_comp);
Solver.solve_with_solver(solverPetsc, V[x], V[y]);
Particles.
ghost_get<VELOCITY>(SKIP_LABELLING);
div = -(Dx(V[x]) + Dy(V[y]));
sum1 = 0;
for (int j = 0; j < bulk.size(); j++) {
auto p = bulk.get<0>(j);
sum1 += Particles.
getProp<VELOCITY>(p)[0] * Particles.
getProp<VELOCITY>(p)[0] +
Particles.
getProp<VELOCITY>(p)[1] * Particles.
getProp<VELOCITY>(p)[1];
}
V_t = V;
v_cl.sum(sum1);
v_cl.execute();
sum1 = sqrt(sum1);
V_err_old = V_err;
if (V_err > V_err_old || abs(V_err_old - V_err) < 1e-8) {
errctr++;
} else {
errctr = 0;
}
if (n > 3) {
if (errctr > 3) {
std::cout << "CONVERGENCE LOOP BROKEN DUE TO INCREASE/VERY SLOW DECREASE IN DIVERGENCE" << std::endl;
Vreset = 1;
break;
} else {
Vreset = 0;
}
}
n++;
}
Particles.
ghost_get<VELOCITY>(SKIP_LABELLING);
u[x][x] = Dx(V[x]);
u[x][y] = 0.5 * (Dx(V[y]) + Dy(V[x]));
u[y][x] = 0.5 * (Dy(V[x]) + Dx(V[y]));
u[y][y] = Dy(V[y]);
if (v_cl.rank() == 0) {
std::cout <<
"Rel l2 cgs err in V = " << V_err <<
" and took " << tt.
getwct() <<
" seconds with " << n
<< " iterations. dt for the stepper is " << dt
<< std::endl;
}
W[x][x] = 0;
W[x][y] = 0.5 * (Dy(V[x]) - Dx(V[y]));
W[y][x] = 0.5 * (Dx(V[y]) - Dy(V[x]));
W[y][y] = 0;
if (ctr%wr_at==0 || ctr==wr_f){
}
}
};
Test structure used for several test.
In case T does not match the PETSC precision compilation create a stub structure.
Class for cpu time benchmarking.
void stop()
Stop the timer.
void start()
Start the timer.
double getwct()
Return the elapsed real time.
Main class that encapsulate a vector properties operand to be used for expressions construction.
void update()
Update the subset indexes.
openfpm::vector< aggregate< int > > & getIds()
Return the ids.
bool write_frame(std::string out, size_t iteration, int opt=VTK_WRITER)
Output particle position and properties.
auto getProp(vect_dist_key_dx vec_key) -> decltype(v_prp.template get< id >(vec_key.getKey()))
Get the property of an element.
void map(size_t opt=NONE)
It move all the particles that does not belong to the local processor to the respective processor.
void deleteGhost()
Delete the particles on the ghost.
It model an expression expr1 + ... exprn.
Initializating OpenFPM
We start with
int main(int argc, char* argv[])
{
{ openfpm_init(&argc,&argv);
size_t Gd = int(std::atof(argv[1]));
double tf = std::atof(argv[2]);
double dt = tf/std::atof(argv[3]);
wr_f=int(std::atof(argv[3]));
wr_at=1;
V_err_eps = 5e-4;
Creating Particles and assigning subsets
We create a particle distribution we certain rCut for the domain.
Also, we fill the initial Polarity concentration as:
\[
\mathbf{p}(x,y,0)=\left( \begin{matrix}
\sin\big(2\pi (\cos\left(\frac{2 x - L_x}{ L_x}\right)-\sin\left(\frac{2 y - L_y}{ L_y}\right) \big)\\[2ex]
\cos \big(2\pi (\cos\left(\frac{2 x - L_x}{ L_x}\right)-\sin\left(\frac{2 y - L_y}{ L_y}\right)\big)
\end{matrix}\right)
\]
double boxsize = 10;
const size_t sz[2] = {Gd, Gd};
double Lx = box.
getHigh(0),Ly = box.getHigh(1);
size_t bc[2] = {NON_PERIODIC, NON_PERIODIC};
double spacing = box.getHigh(0) / (sz[0] - 1),rCut = 3.9 * spacing;
int ord = 2;
auto &v_cl = create_vcluster();
double x0=box.getLow(0), y0=box.getLow(1), x1=box.getHigh(0), y1=box.getHigh(1);
while (it.isNext()) {
auto key = it.get();
double xp = key.get(0) * it.getSpacing(0),yp = key.get(1) * it.getSpacing(1);
if (xp != x0 && yp != y0 && xp != x1 && yp != y1)
Particles.getLastSubset(0);
else
Particles.getLastSubset(1);
++it;
}
auto Pol = getV<POLARIZATION>(Particles);
auto V = getV<VELOCITY>(Particles);
auto g = getV<EXTFORCE>(Particles);
auto P = getV<PRESSURE>(Particles);
auto delmu = getV<DELMU>(Particles);
auto dPol = getV<DPOL>(Particles);
g = 0;delmu = -1.0;
P = 0;V = 0;
while (it2.isNext()) {
Particles.
getProp<POLARIZATION>(p)[x] = sin(2 * M_PI * (cos((2 * xp[x] - Lx) / Lx) - sin((2 * xp[y] - Ly) / Ly)));
Particles.
getProp<POLARIZATION>(p)[y] = cos(2 * M_PI * (cos((2 * xp[x] - Lx) / Lx) - sin((2 * xp[y] - Ly) / Ly)));
++it2;
}
Particles.
ghost_get<POLARIZATION,EXTFORCE,DELMU>(SKIP_LABELLING);
This class represent an N-dimensional box.
__device__ __host__ T getHigh(int i) const
get the high interval of the box
vect_dist_key_dx get()
Get the actual key.
grid_dist_id_iterator_dec< Decomposition > getGridIterator(const size_t(&sz)[dim])
void setPropNames(const openfpm::vector< std::string > &names)
Set the properties names.
auto getPos(vect_dist_key_dx vec_key) -> decltype(v_pos.template get< 0 >(vec_key.getKey()))
Get the position of an element.
vector_dist_iterator getDomainIterator() const
Get an iterator that traverse the particles in the domain.
auto getLastPos() -> decltype(v_pos.template get< 0 >(0))
Get the position of the last element.
void add()
Add local particle.
Create the subset, differential operators, steppers and Cast Global Pointers
On the particles we just created we need to constructed the subset object based on the numbering. Further, We cast the Global Pointers so that Odeint RHS functor can recognize our openfpm distributed structure.
We create DCPSE based operators and alias the particle properties.
auto & bulk = Particles_bulk.
getIds();
auto & boundary = Particles_boundary.
getIds();
auto P_bulk = getV<PRESSURE>(Particles_bulk);
auto Pol_bulk = getV<POLARIZATION>(Particles_bulk);;
auto dPol_bulk = getV<DPOL>(Particles_bulk);
auto dV_bulk = getV<DV>(Particles_bulk);
auto RHS_bulk = getV<VRHS>(Particles_bulk);
auto div_bulk = getV<DIV>(Particles_bulk);
Derivative_x Dx(Particles,ord,rCut), Bulk_Dx(Particles_bulk,ord,rCut);
Derivative_y Dy(Particles, ord, rCut), Bulk_Dy(Particles_bulk, ord,rCut);
Derivative_xy Dxy(Particles, ord, rCut);
auto Dyx = Dxy;
Derivative_xx Dxx(Particles, ord, rCut);
Derivative_yy Dyy(Particles, ord, rCut);
boost::numeric::odeint::runge_kutta4< state_type_2d_ofp,double,state_type_2d_ofp,double,boost::numeric::odeint::vector_space_algebra_ofp> rk4;
vectorGlobal=(void *) &Particles;
vectorGlobal_bulk=(void *) &Particles_bulk;
vectorGlobal_boundary=(void *) &Particles_boundary;
CalcVelocity<Derivative_x,Derivative_y,Derivative_xx,Derivative_xy,Derivative_yy> CalcVelocityObserver(Dx,Dy,Dxx,Dxy,Dyy,Bulk_Dx,Bulk_Dy);
tPol.data.get<0>()=Pol[x];
tPol.data.get<1>()=Pol[y];
Calling Odeint
We initiliaze the time variable t, step_size dt and final time tf.
We create a vector for storing the intermidiate time steps, as most odeint calls return such an object.
We then Call the Odeint_rk4 method created above to do a rk4 time integration from t0 to tf with arguments as the System, the state_type, current time t and the stepsize dt.
Odeint updates X in place. And automatically advect the particles (an Euler step) and do a map and ghost_get as needed after moving particles by calling the observer.
The observer then updates the subset bulk and the DCPSE operators.
The observer also Solves the Force Balance.
We finally deallocate the DCPSE operators and finalize the library.
std::vector<double> inter_times;
size_t steps = integrate_const(rk4 ,
System , tPol , tim , tf , dt, CalcVelocityObserver);
std::cout << "Time steps: " << steps << std::endl;
Pol_bulk[x]=tPol.data.get<0>();
Pol_bulk[y]=tPol.data.get<1>();
Particles.
write(
"Polar_Last");
Dx.deallocate(Particles);
Dy.deallocate(Particles);
Dxy.deallocate(Particles);
Dxx.deallocate(Particles);
Dyy.deallocate(Particles);
Bulk_Dx.deallocate(Particles_bulk);
Bulk_Dy.deallocate(Particles_bulk);
std::cout.precision(17);
if (v_cl.rank() == 0) {
std::cout <<
"The simulation took " << tt2.
getcputime() <<
"(CPU) ------ " << tt2.
getwct()
<< "(Wall) Seconds.";
}
}
openfpm_finalize();
double getcputime()
Return the cpu time.
bool write(std::string out, int opt=VTK_WRITER)
Output particle position and properties.
Full code
#include "config.h"
#define BOOST_MPL_CFG_NO_PREPROCESSED_HEADERS
#define BOOST_MPL_LIMIT_VECTOR_SIZE 40
#include <iostream>
#include "DCPSE/DCPSE_op/DCPSE_op.hpp"
#include "DCPSE/DCPSE_op/DCPSE_Solver.hpp"
#include "Operators/Vector/vector_dist_operators.hpp"
#include "Vector/vector_dist_subset.hpp"
#include "DCPSE/DCPSE_op/EqnsStruct.hpp"
#include "OdeIntegrators/OdeIntegrators.hpp"
constexpr int x = 0;
constexpr int y = 1;
constexpr int POLARIZATION= 0,VELOCITY = 1, VORTICITY = 2, EXTFORCE = 3,PRESSURE = 4, STRAIN_RATE = 5, STRESS = 6, MOLFIELD = 7, DPOL = 8, DV = 9, VRHS = 10, F1 = 11, F2 = 12, F3 = 13, F4 = 14, F5 = 15, F6 = 16, V_T = 17, DIV = 18, DELMU = 19, HPB = 20, FE = 21, R = 22;
double nu = -0.5;
double gama = 0.1;
double zeta = 0.07;
double Ks = 1.0;
double Kb = 1.0;
double lambda = 0.1;
int wr_f;
int wr_at;
double V_err_eps;
void *vectorGlobal=nullptr,*vectorGlobal_bulk=nullptr,*vectorGlobal_boundary=nullptr;
PropNAMES={"00-Polarization","01-Velocity","02-Vorticity","03-ExternalForce","04-Pressure","05-StrainRate","06-Stress","07-MolecularField","08-DPOL","09-DV","10-VRHS","11-f1","12-f2","13-f3","14-f4","15-f5","16-f6","17-V_T","18-DIV","19-DELMU","20-HPB","21-FrankEnergy","22-R"};
typedef aggregate<VectorS<2, double>,
VectorS<2, double>,
double[2][2],
VectorS<2, double>,double,
double[2][2],
double[2][2],
VectorS<2, double>,
VectorS<2, double>,
VectorS<2, double>,
VectorS<2, double>,double,double,double,double,double,double,
VectorS<2, double>,double,double,double,double,
double>
Activegels;
template<typename DX,typename DY,typename DXX,typename DXY,typename DYY>
{
DX &Dx;
DY &Dy;
DXX &Dxx;
DXY &Dxy;
DYY &Dyy;
PolarEv(DX &Dx,DY &Dy,DXX &Dxx,DXY &Dxy,DYY &Dyy):Dx(Dx),Dy(Dy),Dxx(Dxx),Dxy(Dxy),Dyy(Dyy)
{}
{
auto Pol=getV<POLARIZATION>(Particles);
auto Pol_bulk=getV<POLARIZATION>(Particles_bulk);
auto h = getV<MOLFIELD>(Particles);
auto u = getV<STRAIN_RATE>(Particles);
auto dPol = getV<DPOL>(Particles);
auto W = getV<VORTICITY>(Particles);
auto delmu = getV<DELMU>(Particles);
auto H_p_b = getV<HPB>(Particles);
auto r = getV<R>(Particles);
auto dPol_bulk = getV<DPOL>(Particles_bulk);
Pol[x]=X.data.get<0>();
Pol[y]=X.data.get<1>();
Particles.
ghost_get<POLARIZATION>(SKIP_LABELLING);
H_p_b = Pol[x] * Pol[x] + Pol[y] * Pol[y];
h[y] = (Pol[x] * (Ks * Dyy(Pol[y]) + Kb * Dxx(Pol[y]) + (Ks - Kb) * Dxy(Pol[x])) -
Pol[y] * (Ks * Dxx(Pol[x]) + Kb * Dyy(Pol[x]) + (Ks - Kb) * Dxy(Pol[y])));
h[x] = -gama * (lambda * delmu - nu * (u[x][x] * Pol[x] * Pol[x] + u[y][y] * Pol[y] * Pol[y] + 2 * u[x][y] * Pol[x] * Pol[y]) / (H_p_b));
dPol_bulk[x] = ((h[x] * Pol[x] - h[y] * Pol[y]) / gama + lambda * delmu * Pol[x] -
nu * (u[x][x] * Pol[x] + u[x][y] * Pol[y]) + W[x][x] * Pol[x] +
W[x][y] * Pol[y]);
dPol_bulk[y] = ((h[x] * Pol[y] + h[y] * Pol[x]) / gama + lambda * delmu * Pol[y] -
nu * (u[y][x] * Pol[x] + u[y][y] * Pol[y]) + W[y][x] * Pol[x] +
W[y][y] * Pol[y]);
dxdt.data.get<0>()=dPol[x];
dxdt.data.get<1>()=dPol[y];
}
};
template<typename DX,typename DY,typename DXX,typename DXY,typename DYY>
{
DX &Dx, &Bulk_Dx;
DY &Dy, &Bulk_Dy;
DXX &Dxx;
DXY &Dxy;
DYY &Dyy;
double t_old;
int ctr;
CalcVelocity(DX &Dx,DY &Dy,DXX &Dxx,DXY &Dxy,DYY &Dyy,DX &Bulk_Dx,DY &Bulk_Dy):Dx(Dx),Dy(Dy),Dxx(Dxx),Dxy(Dxy),Dyy(Dyy),Bulk_Dx(Bulk_Dx),Bulk_Dy(Bulk_Dy)
{
t_old = 0.0;
ctr = 0;
}
{
double dt = t - t_old;
auto &v_cl = create_vcluster();
auto Pos = getV<PROP_POS>(Particles);
auto Pol=getV<POLARIZATION>(Particles);
auto V = getV<VELOCITY>(Particles);
auto H_p_b = getV<HPB>(Particles);
if (dt != 0) {
H_p_b = sqrt(Pol[x] * Pol[x] + Pol[y] * Pol[y]);
Pol = Pol / H_p_b;
Pos = Pos + (t-t_old)*V;
Particles.
ghost_get<POLARIZATION, EXTFORCE, DELMU>();
Dx.update(Particles);
Dy.update(Particles);
Dxy.update(Particles);
Dxx.update(Particles);
Dyy.update(Particles);
Bulk_Dx.update(Particles_bulk);
Bulk_Dy.update(Particles_bulk);
state.data.get<0>()=Pol[x];
state.data.get<1>()=Pol[y];
if (v_cl.rank() == 0) {
std::cout <<
"Updating operators took " << tt.
getwct() <<
" seconds." << std::endl;
std::cout << "Time step " << ctr << " : " << t << " over." << std::endl;
std::cout << "----------------------------------------------------------" << std::endl;
}
ctr++;
}
auto Dyx = Dxy;
t_old = t;
auto & bulk = Particles_bulk.
getIds();
auto & boundary = Particles_boundary.
getIds();
auto Pol_bulk=getV<POLARIZATION>(Particles_bulk);
auto sigma = getV<STRESS>(Particles);
auto r = getV<R>(Particles);
auto h = getV<MOLFIELD>(Particles);
auto FranckEnergyDensity = getV<FE>(Particles);
auto f1 = getV<F1>(Particles);
auto f2 = getV<F2>(Particles);
auto f3 = getV<F3>(Particles);
auto f4 = getV<F4>(Particles);
auto f5 = getV<F5>(Particles);
auto f6 = getV<F6>(Particles);
auto dV = getV<DV>(Particles);
auto delmu = getV<DELMU>(Particles);
auto g = getV<EXTFORCE>(Particles);
auto P = getV<PRESSURE>(Particles);
auto P_bulk = getV<PRESSURE>(Particles_bulk);
auto RHS = getV<VRHS>(Particles);
auto RHS_bulk = getV<VRHS>(Particles_bulk);
auto div = getV<DIV>(Particles);
auto V_t = getV<V_T>(Particles);
auto u = getV<STRAIN_RATE>(Particles);
auto W = getV<VORTICITY>(Particles);
Pol_bulk[x]=state.data.get<0>();
Pol_bulk[y]=state.data.get<1>();
Particles.
ghost_get<POLARIZATION>(SKIP_LABELLING);
x_comp.setId(0);
y_comp.setId(1);
int n = 0,nmax = 300,errctr = 0, Vreset = 0;
double V_err = 1,V_err_eps = 5 * 1e-3, V_err_old,
sum, sum1;
std::cout << "Calculate velocity (step t=" << t << ")" << std::endl;
solverPetsc.setSolver(KSPGMRES);
solverPetsc.setPreconditioner(PCJACOBI);
Particles.
ghost_get<POLARIZATION>(SKIP_LABELLING);
sigma[x][x] =
-Ks * Dx(Pol[x]) * Dx(Pol[x]) - Kb * Dx(Pol[y]) * Dx(Pol[y]) + (Kb - Ks) * Dy(Pol[x]) * Dx(Pol[y]);
sigma[x][y] =
-Ks * Dy(Pol[y]) * Dx(Pol[y]) - Kb * Dy(Pol[x]) * Dx(Pol[x]) + (Kb - Ks) * Dx(Pol[y]) * Dx(Pol[x]);
sigma[y][x] =
-Ks * Dx(Pol[x]) * Dy(Pol[x]) - Kb * Dx(Pol[y]) * Dy(Pol[y]) + (Kb - Ks) * Dy(Pol[x]) * Dy(Pol[y]);
sigma[y][y] =
-Ks * Dy(Pol[y]) * Dy(Pol[y]) - Kb * Dy(Pol[x]) * Dy(Pol[x]) + (Kb - Ks) * Dx(Pol[y]) * Dy(Pol[x]);
r = Pol[x] * Pol[x] + Pol[y] * Pol[y];
for (int j = 0; j < bulk.size(); j++) {
auto p = bulk.get<0>(j);
Particles.
getProp<R>(p) = (Particles.
getProp<R>(p) == 0) ? 1 : Particles.getProp<R>(p);
}
for (int j = 0; j < boundary.size(); j++) {
auto p = boundary.get<0>(j);
Particles.
getProp<R>(p) = (Particles.
getProp<R>(p) == 0) ? 1 : Particles.getProp<R>(p);
}
h[y] = (Pol[x] * (Ks * Dyy(Pol[y]) + Kb * Dxx(Pol[y]) + (Ks - Kb) * Dxy(Pol[x])) -
Pol[y] * (Ks * Dxx(Pol[x]) + Kb * Dyy(Pol[x]) + (Ks - Kb) * Dxy(Pol[y])));
Particles.
ghost_get<MOLFIELD>(SKIP_LABELLING);
FranckEnergyDensity = (Ks / 2.0) *
((Dx(Pol[x]) * Dx(Pol[x])) + (Dy(Pol[x]) * Dy(Pol[x])) +
(Dx(Pol[y]) * Dx(Pol[y])) +
(Dy(Pol[y]) * Dy(Pol[y]))) +
((Kb - Ks) / 2.0) * ((Dx(Pol[y]) - Dy(Pol[x])) * (Dx(Pol[y]) - Dy(Pol[x])));
f1 = gama * nu * Pol[x] * Pol[x] * (Pol[x] * Pol[x] - Pol[y] * Pol[y]) / (r);
f2 = 2.0 * gama * nu * Pol[x] * Pol[y] * (Pol[x] * Pol[x] - Pol[y] * Pol[y]) / (r);
f3 = gama * nu * Pol[y] * Pol[y] * (Pol[x] * Pol[x] - Pol[y] * Pol[y]) / (r);
f4 = 2.0 * gama * nu * Pol[x] * Pol[x] * Pol[x] * Pol[y] / (r);
f5 = 4.0 * gama * nu * Pol[x] * Pol[x] * Pol[y] * Pol[y] / (r);
f6 = 2.0 * gama * nu * Pol[x] * Pol[y] * Pol[y] * Pol[y] / (r);
Particles.
ghost_get<F1, F2, F3, F4, F5, F6>(SKIP_LABELLING);
texp_v<double> Dxf1 = Dx(f1),Dxf2 = Dx(f2),Dxf3 = Dx(f3),Dxf4 = Dx(f4),Dxf5 = Dx(f5),Dxf6 = Dx(f6),
Dyf1 = Dy(f1),Dyf2 = Dy(f2),Dyf3 = Dy(f3),Dyf4 = Dy(f4),Dyf5 = Dy(f5),Dyf6 = Dy(f6);
dV[x] = -0.5 * Dy(h[y]) + zeta * Dx(delmu * Pol[x] * Pol[x]) + zeta * Dy(delmu * Pol[x] * Pol[y]) -
zeta * Dx(0.5 * delmu * (Pol[x] * Pol[x] + Pol[y] * Pol[y])) -
0.5 * nu * Dx(-2.0 * h[y] * Pol[x] * Pol[y])
- 0.5 * nu * Dy(h[y] * (Pol[x] * Pol[x] - Pol[y] * Pol[y])) - Dx(sigma[x][x]) -
Dy(sigma[x][y]) -
g[x]
- 0.5 * nu * Dx(-gama * lambda * delmu * (Pol[x] * Pol[x] - Pol[y] * Pol[y]))
- 0.5 * Dy(-2.0 * gama * lambda * delmu * (Pol[x] * Pol[y]));
dV[y] = -0.5 * Dx(-h[y]) + zeta * Dy(delmu * Pol[y] * Pol[y]) + zeta * Dx(delmu * Pol[x] * Pol[y]) -
zeta * Dy(0.5 * delmu * (Pol[x] * Pol[x] + Pol[y] * Pol[y])) -
0.5 * nu * Dy(2.0 * h[y] * Pol[x] * Pol[y])
- 0.5 * nu * Dx(h[y] * (Pol[x] * Pol[x] - Pol[y] * Pol[y])) - Dx(sigma[y][x]) -
Dy(sigma[y][y]) -
g[y]
- 0.5 * nu * Dy(gama * lambda * delmu * (Pol[x] * Pol[x] - Pol[y] * Pol[y]))
- 0.5 * Dx(-2.0 * gama * lambda * delmu * (Pol[x] * Pol[y]));
auto Stokes1 =
eta * (Dxx(V[x]) + Dyy(V[x]))
+ 0.5 * nu * (Dxf1 * Dx(V[x]) + f1 * Dxx(V[x]))
+ 0.5 * nu * (Dxf2 * 0.5 * (Dx(V[y]) + Dy(V[x])) + f2 * 0.5 * (Dxx(V[y]) + Dyx(V[x])))
+ 0.5 * nu * (Dxf3 * Dy(V[y]) + f3 * Dyx(V[y]))
+ 0.5 * nu * (Dyf4 * Dx(V[x]) + f4 * Dxy(V[x]))
+ 0.5 * nu * (Dyf5 * 0.5 * (Dx(V[y]) + Dy(V[x])) + f5 * 0.5 * (Dxy(V[y]) + Dyy(V[x])))
+ 0.5 * nu * (Dyf6 * Dy(V[y]) + f6 * Dyy(V[y]));
auto Stokes2 =
eta * (Dxx(V[y]) + Dyy(V[y]))
- 0.5 * nu * (Dyf1 * Dx(V[x]) + f1 * Dxy(V[x]))
- 0.5 * nu * (Dyf2 * 0.5 * (Dx(V[y]) + Dy(V[x])) + f2 * 0.5 * (Dxy(V[y]) + Dyy(V[x])))
- 0.5 * nu * (Dyf3 * Dy(V[y]) + f3 * Dyy(V[y]))
+ 0.5 * nu * (Dxf4 * Dx(V[x]) + f4 * Dxx(V[x]))
+ 0.5 * nu * (Dxf5 * 0.5 * (Dx(V[y]) + Dy(V[x])) + f5 * 0.5 * (Dxx(V[y]) + Dyx(V[x])))
+ 0.5 * nu * (Dxf6 * Dy(V[y]) + f6 * Dyx(V[y]));
std::cout <<
"Init of Velocity took " << tt.
getwct() <<
" seconds." << std::endl;
V_err = 1;
n = 0;
errctr = 0;
if (Vreset == 1) {
Vreset = 0;
}
Particles.
ghost_get<PRESSURE>(SKIP_LABELLING);
RHS_bulk[x] = dV[x] + Bulk_Dx(
P);
RHS_bulk[y] = dV[y] + Bulk_Dy(
P);
DCPSE_scheme<equations2d2, vector_type> Solver(Particles);
Solver.impose(Stokes1, bulk, RHS[0], x_comp);
Solver.impose(Stokes2, bulk, RHS[1], y_comp);
Solver.impose(V[x], boundary, 0, x_comp);
Solver.impose(V[y], boundary, 0, y_comp);
Solver.solve_with_solver(solverPetsc, V[x], V[y]);
Particles.
ghost_get<VELOCITY>(SKIP_LABELLING);
div = -(Dx(V[x]) + Dy(V[y]));
while (V_err >= V_err_eps && n <= nmax) {
Particles.
ghost_get<PRESSURE>(SKIP_LABELLING);
RHS_bulk[x] = dV[x] + Bulk_Dx(
P);
RHS_bulk[y] = dV[y] + Bulk_Dy(
P);
Solver.reset_b();
Solver.impose_b(bulk, RHS[0], x_comp);
Solver.impose_b(bulk, RHS[1], y_comp);
Solver.impose_b(boundary, 0, x_comp);
Solver.impose_b(boundary, 0, y_comp);
Solver.solve_with_solver(solverPetsc, V[x], V[y]);
Particles.
ghost_get<VELOCITY>(SKIP_LABELLING);
div = -(Dx(V[x]) + Dy(V[y]));
sum1 = 0;
for (int j = 0; j < bulk.size(); j++) {
auto p = bulk.get<0>(j);
sum1 += Particles.
getProp<VELOCITY>(p)[0] * Particles.
getProp<VELOCITY>(p)[0] +
Particles.
getProp<VELOCITY>(p)[1] * Particles.
getProp<VELOCITY>(p)[1];
}
V_t = V;
v_cl.sum(sum1);
v_cl.execute();
sum1 = sqrt(sum1);
V_err_old = V_err;
if (V_err > V_err_old || abs(V_err_old - V_err) < 1e-8) {
errctr++;
} else {
errctr = 0;
}
if (n > 3) {
if (errctr > 3) {
std::cout << "CONVERGENCE LOOP BROKEN DUE TO INCREASE/VERY SLOW DECREASE IN DIVERGENCE" << std::endl;
Vreset = 1;
break;
} else {
Vreset = 0;
}
}
n++;
}
Particles.
ghost_get<VELOCITY>(SKIP_LABELLING);
u[x][x] = Dx(V[x]);
u[x][y] = 0.5 * (Dx(V[y]) + Dy(V[x]));
u[y][x] = 0.5 * (Dy(V[x]) + Dx(V[y]));
u[y][y] = Dy(V[y]);
if (v_cl.rank() == 0) {
std::cout <<
"Rel l2 cgs err in V = " << V_err <<
" and took " << tt.
getwct() <<
" seconds with " << n
<< " iterations. dt for the stepper is " << dt
<< std::endl;
}
W[x][x] = 0;
W[x][y] = 0.5 * (Dy(V[x]) - Dx(V[y]));
W[y][x] = 0.5 * (Dx(V[y]) - Dy(V[x]));
W[y][y] = 0;
if (ctr%wr_at==0 || ctr==wr_f){
}
}
};
int main(int argc, char* argv[])
{
{ openfpm_init(&argc,&argv);
size_t Gd =
int(std::atof(argv[1]));
double tf = std::atof(argv[2]);
double dt = tf/std::atof(argv[3]);
wr_f=
int(std::atof(argv[3]));
wr_at=1;
V_err_eps = 5e-4;
double boxsize = 10;
const size_t sz[2] = {Gd, Gd};
double Lx = box.
getHigh(0),Ly = box.getHigh(1);
size_t bc[2] = {NON_PERIODIC, NON_PERIODIC};
double spacing = box.getHigh(0) / (sz[0] - 1),rCut = 3.9 * spacing;
int ord = 2;
auto &v_cl = create_vcluster();
double x0=box.getLow(0), y0=box.getLow(1), x1=box.getHigh(0), y1=box.getHigh(1);
while (it.isNext()) {
auto key = it.get();
double xp = key.
get(0) * it.getSpacing(0),yp = key.get(1) * it.getSpacing(1);
if (xp != x0 && yp != y0 && xp != x1 && yp != y1)
Particles.getLastSubset(0);
else
Particles.getLastSubset(1);
++it;
}
auto Pol = getV<POLARIZATION>(Particles);
auto V = getV<VELOCITY>(Particles);
auto g = getV<EXTFORCE>(Particles);
auto P = getV<PRESSURE>(Particles);
auto delmu = getV<DELMU>(Particles);
auto dPol = getV<DPOL>(Particles);
g = 0;delmu = -1.0;
P = 0;V = 0;
while (it2.isNext()) {
Particles.
getProp<POLARIZATION>(p)[x] = sin(2 * M_PI * (cos((2 * xp[x] - Lx) / Lx) - sin((2 * xp[y] - Ly) / Ly)));
Particles.
getProp<POLARIZATION>(p)[y] = cos(2 * M_PI * (cos((2 * xp[x] - Lx) / Lx) - sin((2 * xp[y] - Ly) / Ly)));
++it2;
}
Particles.
ghost_get<POLARIZATION,EXTFORCE,DELMU>(SKIP_LABELLING);
auto & bulk = Particles_bulk.
getIds();
auto & boundary = Particles_boundary.
getIds();
auto P_bulk = getV<PRESSURE>(Particles_bulk);
auto Pol_bulk = getV<POLARIZATION>(Particles_bulk);;
auto dPol_bulk = getV<DPOL>(Particles_bulk);
auto dV_bulk = getV<DV>(Particles_bulk);
auto RHS_bulk = getV<VRHS>(Particles_bulk);
auto div_bulk = getV<DIV>(Particles_bulk);
Derivative_x Dx(Particles,ord,rCut), Bulk_Dx(Particles_bulk,ord,rCut);
Derivative_y Dy(Particles, ord, rCut), Bulk_Dy(Particles_bulk, ord,rCut);
Derivative_xy Dxy(Particles, ord, rCut);
auto Dyx = Dxy;
Derivative_xx Dxx(Particles, ord, rCut);
Derivative_yy Dyy(Particles, ord, rCut);
boost::numeric::odeint::runge_kutta4< state_type_2d_ofp,double,state_type_2d_ofp,double,boost::numeric::odeint::vector_space_algebra_ofp> rk4;
vectorGlobal=(void *) &Particles;
vectorGlobal_bulk=(void *) &Particles_bulk;
vectorGlobal_boundary=(void *) &Particles_boundary;
CalcVelocity<Derivative_x,Derivative_y,Derivative_xx,Derivative_xy,Derivative_yy> CalcVelocityObserver(Dx,Dy,Dxx,Dxy,Dyy,Bulk_Dx,Bulk_Dy);
tPol.data.get<0>()=Pol[x];
tPol.data.get<1>()=Pol[y];
dPol = Pol;
double V_err = 1, V_err_old;
double tim=0;
std::vector<double> inter_times;
size_t steps = integrate_const(rk4 ,
System , tPol , tim , tf , dt, CalcVelocityObserver);
std::cout << "Time steps: " << steps << std::endl;
Pol_bulk[x]=tPol.data.get<0>();
Pol_bulk[y]=tPol.data.get<1>();
Particles.
write(
"Polar_Last");
Dx.deallocate(Particles);
Dy.deallocate(Particles);
Dxy.deallocate(Particles);
Dxx.deallocate(Particles);
Dyy.deallocate(Particles);
Bulk_Dx.deallocate(Particles_bulk);
Bulk_Dy.deallocate(Particles_bulk);
std::cout.precision(17);
if (v_cl.rank() == 0) {
std::cout <<
"The simulation took " << tt2.
getcputime() <<
"(CPU) ------ " << tt2.
getwct()
<< "(Wall) Seconds.";
}
}
openfpm_finalize();
}
__device__ __host__ const T & get(unsigned int i) const
Get coordinate.
KeyT const ValueT ValueT OffsetIteratorT OffsetIteratorT int
[in] The number of segments that comprise the sorting data