OpenFPM_pdata  4.1.0
Project that contain the implementation of distributed structures
 
Loading...
Searching...
No Matches
main.cpp
Go to the documentation of this file.
1//
2// Created by jstark on 2020-05-18. Updated on 2022-01-05.
3//
39
40
41// Include redistancing header files
47
48
73
74int main(int argc, char* argv[])
75{
76// std::string image_name = "circle";
77// std::string image_name = "triangle";
78// std::string image_name = "face";
79 std::string image_name = "dolphin";
80
81 typedef double phi_type;
82 // initialize library
83 openfpm_init(&argc, &argv);
85 // Set current working directory, define output paths and create folders where output will be saved
86 std::string cwd = get_cwd();
87 const std::string path_output = cwd + "/output_" + image_name;
88// const std::string path_output = cwd + "/output_face";
89
91
93 // Now we set the input paths. We need a binary file with the pixel values and a csv file with the
94 // size of the stack (in #pixels / dimension)
95 const std::string path_input ="input/";
96 const std::string path_to_image = path_input + image_name + ".bin";
97 const std::string path_to_size = path_input + "size_" + image_name + ".csv";
98
99 /*
100 * in case of 2D (single image):
101 */
102 const unsigned int grid_dim = 2;
103 // some indices
104 const size_t x = 0;
105 const size_t y = 1;
106
107 const size_t Phi_0_grid = 0;
108 const size_t Phi_SDF_grid = 1;
109
110 const size_t Phi_SDF_vd = 0;
111 const size_t Phi_grad_vd = 1;
112 const size_t Phi_magnOfGrad_vd = 2;
114
115
130 const phi_type refinement [] = {0.5, 0.5}; // (2D) factor by which grid should be finer / coarser as
131 // underlying image in each dimension (e.g. to get isotropic grid from anisotropic image resolution)
134 // read the stack size (number of pixel values per dimension) from a binary file
135 // alternatively, you can directly define the stack size as: std::vector<size_t> stack_size {#pixels in x, #pixels in y}
150
151 std::vector<int> stack_size = get_size(path_to_size);
152 auto & v_cl = create_vcluster();
153 if (v_cl.rank() == 0)
154 {
155 for(std::vector<int>::size_type i = 0; i != stack_size.size(); i++)
156 {
157 std::cout << "#Pixel in dimension " << i << " = " << stack_size[i] << std::endl;
158 std::cout << "original refinement in dimension " << i << " = " << refinement[i] << std::endl;
159 }
160 }
161
162 // Array with grid dimensions after refinement. This size-array will be used for the grid creation.
163 const size_t sz[grid_dim] = {(size_t)std::round(stack_size[x] * refinement[x]), (size_t)std::round(stack_size[y] *
164 refinement[y])}; // 2D
166 // Here we create a 2D grid that stores 2 properties:
167 // Prop1: store the initial Phi;
168 // Prop2: here the re-initialized Phi (signed distance function) will be written to in the re-distancing step
182
183 Box<grid_dim, phi_type> box({0.0, 0.0}, {5.0, 5.0}); // 2D
184
186 typedef aggregate<phi_type, phi_type> props;
187 typedef grid_dist_id<grid_dim, phi_type, props > grid_in_type;
188 grid_in_type g_dist(sz, box, ghost);
189 g_dist.setPropNames({"Phi_0", "Phi_SDF"});
190
191 // initialize complete grid including ghost layer with -1
192 init_grid_and_ghost<Phi_0_grid>(g_dist, -1.0);
193
194 // Now we can initialize the grid with the pixel values from the image stack
195 load_pixel_onto_grid<Phi_0_grid>(g_dist, path_to_image, stack_size);
196 g_dist.write(path_output + "/grid_from_images_initial", FORMAT_BINARY); // Save the initial grid as vtk file
197
198
200 // Now we want to convert the initial Phi into a signed distance function (SDF) with magnitude of gradient = 1
201 // For the initial re-distancing we use the Sussman method
202 // 1.) Set some redistancing options (for details see example sussman disk or sphere)
203 Redist_options<phi_type> redist_options;
204 redist_options.min_iter = 1e3;
205 redist_options.max_iter = 1e4;
206
207 redist_options.convTolChange.value = 1e-7;
208 redist_options.convTolChange.check = true;
209 redist_options.convTolResidual.value = 1e-6; // is ignored if convTolResidual.check = false;
210 redist_options.convTolResidual.check = false;
211
212 redist_options.interval_check_convergence = 1e3;
213 redist_options.width_NB_in_grid_points = 10;
214 redist_options.print_current_iterChangeResidual = true;
215 redist_options.print_steadyState_iter = true;
216 redist_options.save_temp_grid = true;
217
218 RedistancingSussman<grid_in_type, phi_type> redist_obj(g_dist, redist_options); // Instantiation of Sussman-redistancing
219 // class
220// std::cout << "dt = " << redist_obj.get_time_step() << std::endl;
221 // Run the redistancing. in the <> brackets provide property-index where 1.) your initial Phi is stored and 2.) where the resulting SDF should be written to.
222 redist_obj.run_redistancing<Phi_0_grid, Phi_SDF_grid>();
223
224 g_dist.write(path_output + "/grid_images_post_redistancing", FORMAT_BINARY); // Save the result as vtk file
225
227 // Get narrow band: Place particles on interface (narrow band width e.g. 2 grid points on each side of the interface)
228 size_t bc[grid_dim] = {NON_PERIODIC, NON_PERIODIC};
229 // Create an empty vector to which narrow-band particles will be added. You can choose, how many properties you want.
230 // Minimum is 1 property, to which the Phi_SDF can be written
231 // In this example we chose 3 properties. The 1st for the Phi_SDF, the 2nd for the gradient of phi and the 3rd for
232 // the magnitude of the gradient
233 typedef aggregate<phi_type, Point<grid_dim, phi_type>, phi_type> props_nb;
235 Ghost<grid_dim, phi_type> ghost_vd(0);
236 vd_type vd_narrow_band(0, box, bc, ghost_vd);
237 vd_narrow_band.setPropNames({"Phi_SDF", "Phi_grad", "Phi_magnOfGrad"});
238
239 NarrowBand<grid_in_type, phi_type> narrowBand(g_dist, redist_options.width_NB_in_grid_points); // Instantiation of
240 // NarrowBand class
241
242 // Get the narrow band. You can decide, if you only want the Phi_SDF saved to your particles or
243 // if you also want the gradients or gradients and magnitude of gradient.
244 // The function will know depending on how many property-indices you provide in the <> brackets.
245 // First property-index must always be the index of the SDF on the grid!
246 // E.g.: The following line would only write only the Phi_SDF from the grid to your narrow-band particles
247 // narrowBand.get_narrow_band<Phi_SDF_grid, Phi_SDF_vd>(g_dist, vd_narrow_band);
248 // Whereas this will give you the gradients and magnOfGrad of Phi as well:
249 narrowBand.get_narrow_band<Phi_SDF_grid, Phi_SDF_vd, Phi_grad_vd, Phi_magnOfGrad_vd>(g_dist, vd_narrow_band);
250
251 vd_narrow_band.write(path_output + "/vd_narrow_band_images", FORMAT_BINARY); // Save particles as vtk file
252
253 openfpm_finalize(); // Finalize openFPM library
254 return 0;
255}
257
Header file containing functions for loading pixel values from 2D image or 3D image stack (volume) st...
std::vector< int > get_size(const std::string &path_to_file)
Read the number of pixels per dimension from a csv-file in order to create a grid with the same size.
Class for getting the narrow band around the interface.
Header file containing functions for creating files and folders.
static void create_directory_if_not_exist(std::string path, bool silent=0)
Creates a directory if not already existent.
static std::string get_cwd()
Gets the current working directory and returns path as string.
Class for reinitializing a level-set function into a signed distance function using Sussman redistanc...
This class represent an N-dimensional box.
Definition Box.hpp:61
Class for getting the narrow band around the interface.
Class for reinitializing a level-set function into a signed distance function using Sussman redistanc...
This is a distributed grid.
Distributed vector.
Structure to bundle options for redistancing.
aggregate of properties, from a list of object if create a struct that follow the OPENFPM native stru...